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8.1 Introduction: Goals and Challenges of Simulating

Protein Folding

Computer simulation holds great promise to significantly complement experi-
ment as a tool for biological and biophysical characterization. Simulations offer
the promise of atomic spatial detail with femtosecond temporal resolution.
However, the application of computational methodology has been greatly
limited due to fundamental computational challenges: put simply, for much of
what one would want to examine, atomistic simulations would require decades
to millennia to complete. Below, we detail current methods to tackle these
challenges as well as recent applications of this methodology.

8.1.1 Simulating Protein Folding

Proteins play a fundamental role in biology. With their ability to perform
numerous biological functions, including acting as catalysts, antibodies, and
molecular signals, proteins today realize many of the goals to which modern
nanotechnology aspires. However, before proteins can carry out these remark-
able molecular functions, they must perform another amazing feat – they must
assemble themselves. This process of protein self-assembly into a particular
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shape, or ‘‘fold,’’ is called protein folding. Due to the importance of the folded
state in the biological activity of proteins, recent interest from misfolding
related diseases1 (see Chapter 10 by Esteras-Chopo et al.), and a fascination
with how this process occurs,2–4 there has been much work performed in order
to unravel the mechanism of protein folding5 (see Chapter 3 by Wolynes).
While there are several questions relating to the ‘‘protein folding problem,’’

including structure prediction6,7 and protein design (see Chapter 9 by Lehmann
and co-workers), here we will concentrate on another aspect of folding: how do
proteins fold into their final folded structure? Experimentally characterizing the
detailed nature of the protein folding mechanism is considerably more difficult
than characterizing the static structure. We therefore turn to the combination
of experiment and atomistic models (that can readily yield the desired spatial
and temporal detail), but we must in turn ask ‘‘how quantitatively predictive
are these simulations?’’ The true test is statistical significance. The very act of
statistically comparing with experiment is critical, and leads to either model
validation or an indication that further model refinement is necessary.
There are two approaches one can take in molecular simulation. One direc-

tion is to perform coarse-grained simulations using simplified, or ‘‘minimalist,’’
models. These models typically either make simplifying assumptions (such as
Go models, which use simplified Hamiltonians8), or employ coarse-grained
representations (such as using alpha-carbon only models to represent the
protein9) or potentially both. While these methods are often first considered
due to their computational efficiency, perhaps an even greater benefit of simpli-
fied models is their ability to potentially yield insight into general properties
involved in protein folding. However, with any model there are limitations and
the cost for such potential insight into general properties of folding is the
limitation of restricted applicability to any particular protein system.
Alternatively, one can examine more detailed models. These models typically

have full atomic detail, often for both the protein and solvent alike. Detailed
models have the obvious benefit of potentially greater fidelity to experiment.
However, this comes at two great costs. First, the computational demands for
performing the simulation become enormous. Second, the added degrees of
freedom lead to an explosion of extra detail and simulation-generated data; the
act of gleaning insight from this sea of data is no simple task and is often
underestimated, especially in light of the more straightforward (although still
often difficult) task of simply performing the simulations. We emphasize that
the relevant question is not whether a given method is ‘‘correct’’ in some
absolute sense (as all models have limitations), but whether the model is predic-
tive to some degree of accuracy.
Why are detailed models worth this enormous effort in both simulation and

analysis? First, quantitative comparison between theory and experiment is critical
for validating simulation as well as lending interpretation to experimental results.
While it is generally held that experiments will not be able to yield the detail and
precision available in simulations (and that simulations may likely be the only
way one can fully understand the folding mechanism10), without quantitative
validation of simulations there is no way to know whether the simulation model
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or methodology are sufficiently accurate to yield a faithful reproduction of
reality. Indeed, without a quantitative comparison to experiment, there is no way
to decisively arbitrate the relative predictive merits of one model over another.
Second, detailed models potentially have a greater predictive power. In

principle, a detailed model should allow one to start purely from the protein
sequence and, by simulating the physical dynamics of protein folding, yield
everything that one can measure experimentally, including folding and un-
folding rates, free energies, and the detailed geometry of the folded state. In
practice, the ability for detailed models to achieve these lofty goals rests both on
the ability to carry out the computationally demanding kinetics simulations as
well as the ability for current models (force fields) to yield sufficiently accurate
representations of inter-atomic interactions.

8.1.2 What Are the Challenges for Atomistic Simulation?

First, one must consider the source of the great computational demands of
molecular simulation at atomic detail. To simulate dynamics, typically one
numerically integrates Newton’s equations for all of the atoms in the system.
By choosing models with atomic degrees of freedom, one must simulate the
dynamics at the timescales of atomic motion (femtoseconds). Indeed, if the
timestep involved in numerical integration is pushed too high (without con-
straining degrees of freedom), the numerical integration becomes unstable. This
leads to the trivial problem that if one wants to reach the millisecond timescale
by taking femtosecond steps, many (1012) steps must be taken. While modern
molecular dynamics codes are extremely well optimized and perform typically
millions of steps per CPU day, this clearly falls short of what is needed (see
Figure 8.1).
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Figure 8.1 Relevant timescales for protein folding. While detailed simulations must
start with femtosecond timesteps, the timescales one would like to reach
are much longer, requiring billions (microseconds) to trillions (milli-
seconds) of iterations. Typical fast, modern CPUs can do approximately a
million iterations in day, posing a major challenge for detailed simulation.
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However, even if one could reach the relevant timescales, the next question is
whether our models would be sufficiently accurate. In particular, would we
reach the folded state, would the folded state be stable (with free energy of
stability comparable to experiment), and would we reach the folded state with a
rate comparable to experiment? Indeed, if one could quantitatively predict
protein folding rates, free energies of stability, and structure of the relevant
states at equilibrium, one would be able to predict essentially everything that
can be measured experimentally. While rates and free energies themselves can
only indirectly detail the nature of how proteins fold, clearly the ability to
quantitatively predict all experimental observables is a necessary prerequisite
for any successful theory or simulation of protein folding.
However, a quantitative prediction of all experimental observables is ne-

cessary but not sufficient. If a simulation could only reproduce experiments, the
simulation would not yield any new insight, which is the goal of simulations in
the first place. This leads to a third important challenge for simulation: gaining
new insight. Indeed, as one adds detail to simulations, the burden of analysis
becomes greater and greater. Atomistic simulations can easily generate giga-
bytes of data to be processed, but the volume of data does not reduce the in-
herent complexity of the physical process. A vast number of degrees of freedom
from time-resolved protein and water coordinates can obscure any simple,
direct analysis of the folding mechanism.
Additionally, analysis of such simulations may reflect the seemingly arbi-

trary state definitions used by the one performing the analysis, and great
care must therefore be taken in defining the relevant states prior to data
analysis. This, of course, often presents the most notable issue in interpre-
ting simulation data, due to the sheer difficulty in collecting adequate data
to define the states, and microstates, that the model would predict. As detailed
below, this issue is most often overcome by employing simplified models.
These models are generally built around the known or desired states prior
to simulation, but suffer the obvious lack of predicting metastable, mis-
folded, or intermediate states that may be observable when using atomistic
simulation models.

8.2 Protein Folding Models: From Atomistic to

Simplified Representations

8.2.1 Atomic Force Fields

Atomistic models for protein folding typically utilize a classical force field,
which attempts to reproduce the physical interaction between the atoms in the
protein and solvent. The energy of the system is defined as the sum of inter-
atomic potentials, which consist of several terms:

E ¼ ELJ þ ECoulomb þ Ebonded ð8:1Þ
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The van der Waals interaction between atoms is most commonly modeled by a
Lennard–Jones energy (ELJ)

ELJ ¼ Sijeij½ðsij=rijÞ12 � ðsij=rijÞ6� ð8:2Þ

where sij is related to the size of the atoms i and j and eij is related to the
strength of their interaction. While van der Waals attraction is relatively weak,
the LJ potential also serves an important role in providing hard core repulsion
between atoms. The bonded interactions modeled in Ebonded handle the specific
stereochemistry of the molecule – in particular, the nature of the covalent bonds
and steric constraints in the angles and dihedral angles of the molecule. These
interactions are clearly local, but they play a very important role in determining
the conformational space of the molecule; changes to the backbone dihedral
potentials in such a model can lead to greatly diverging simulation results.11

ECoulomb corresponds to the familiar Coulomb’s law:

ECoulomb ¼ Sijqiqj=rij ð8:3Þ

where qi is the charge on atom i and rij is the distance between atoms i and j. To
best parameterize atomic force fields, such as accounting for quantum mech-
anical effects between nearby atoms, some force fields also include scaling
coefficients for the pairwise ELJ and ECoulomb terms between atoms separated
by three covalent bonds (so-called ‘‘1-4 scaling’’), and it has recently been dem-
onstrated that modifying these scaling terms can significantly alter simulation
results.11

It is perhaps most natural to handle the pairwise interactions explicitly as in
Equation (8.1). However, this leads to simulation codes whose performance
scales as N2, where N is the number of atoms being simulated. Clearly, this is
very computationally demanding. To reduce this demand, the calculation can
ideally be made to scale linearly with N. For inherently short range inter-
actions, it is natural to do this with cutoffs and long range corrections, i.e. to set
the potential to zero smoothly once the distance is beyond some cutoff, such as
12 Å. Such cutoff procedures have been shown to lead to qualitatively incorrect
results for Coulomb interactions12 and reaction field or Ewald-based methods
have been suggested as alternatives that can obtain significantly better results.13

Clearly there are many parameters in the above formulas. Indeed, these
numbers grow further when one considers the fact that the chemical environ-
ment of atoms causes even the same type of chemical element (e.g. carbon) to
act very differently. For example, carbon in a hydrocarbon chain will behave
fundamentally differently from carbon in an aromatic ring. In order to handle
such purely quantum mechanical effects in a classical model, one creates
multiple atom types (corresponding to the different relevant environments) for
each physical atomic element. In this example, one would define different
carbon atom types. Thus, while there are only a handful of relevant physical
atoms involved (primarily carbon, hydrogen, oxygen, and nitrogen), there can
be tens to hundreds of different atom types.
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Although this is clearly the natural way to handle the role of chemical
environment in a classical model, this leads to an explosion of para-
meters needed in the model, leading to a modeling challenge in the deter-
mination of these parameters. Several groups have risen to this challenge
and have developed parameterizations for the force field functionals similar
to the form above. Typically, these parameterizations are divided into terms
for proteins (such as AMBER,14 CHARMM,15 and OPLS16) and for the
solvent (such as TIP or SPC models). Additionally, these force fields are
typically parameterized using a specific water model, and may also be asso-
ciated with specific molecular dynamics packages. One should thus be
careful in combining protein and solvent models and also not confuse
atomic force fields with the molecular dynamics software for which they were
derived.

8.2.2 Implicit Solvation Models

With the parameterization described above for the physical forces between
atoms, one can simulate all relevant interactions: protein–protein, protein–
solvent, and solvent–solvent. However, in typical simulations with solvent
represented explicitly (i.e. directly simulating the solvent atom by atom), the
number of solvent atoms is much larger than the number of protein atoms and
thus the majority of the computational time (e.g. 90%) goes into simulating the
solvent. Clearly the solvent plays an important role since the hydrophobic and
dielectric properties of water are essential to protein stability.17,18 However, an
alternative to explicit simulation of water is to include these properties impli-
citly by using a continuum model of solvent properties.
Typically, these models account for hydrophobicity in terms of some free-

energy price for solvent exposed area on the protein. These surface area (SA)
based methods vary somewhat in terms of how the surface area is calculated as
well as the energetic dependence on this exposed surface area. We stress that
one should not a priori expect that a simpler (and perhaps less accurate) cal-
culation of the surface area yields worse results than a more geometrically
accurate SA calculation. Indeed, since SA is itself an approximation, what is
important for the fidelity of the model is not the geometric accuracy of the
surface area but rather whether the SA term faithfully reproduces the physical
effect as judged by comparison to experiment.
The dielectric contribution of water to the free energy is in some ways a more

difficult contribution for which to account. The canonical method follows the
Poisson–Boltzmann (PB) equation. To demonstrate the philosophy of imple-
menting PB calculations, consider a protein immersed in solvent where the
protein and solvent are modeled as dielectric media with dielectric constants of
ein and eout respectively (thus making the dielectric a function of spatial posi-
tion, e(x, y, z)). Also, consider that the protein will likely have charges with a
spatial density rprotein(x, y, z) and that there will be counter-ions in the solvent
with a charge density rcountert(x, y, z). In this case, we can describe the resulting
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electrostatic potential and charge density as

r½eðx; y; zÞrf� ¼ �4prðx; y; zÞ
¼ �4p½rproteinðx; y; zÞ þ rcountertðx; y; zÞ� ð8:4Þ

where the total charge density r(x, y, z) is comprised of both the protein and
counter-ion charges. If one assumes that the counter-ion density is driven
thermodynamically to its free energy minimum, we can make the ‘‘mean field’’-
like approximation that

rcountertðx; y; zÞ ¼ SIniqi exp½�qifðx; y; zÞ=kT� ð8:5Þ

where ni is the bulk number density of counter-ion species i and qi is its charge.
Thus, this method handles counter-ions implicitly as well as aqueous solvent.
Including this term leads to the so-called non-linear Poisson–Boltzmann
equation. If the Boltzmann term is Taylor expanded for small f(x, y, z)/kT (i.e.
high temperature, low counter-ion concentration, or low potential strength),
one gets the so-called linearized Poisson–Boltzmann equation.
In general, the Poisson–Boltzmann equation is considered by many to be the

‘‘gold standard’’ for implicit solvation calculations. It can be used for both
energy and force calculation19 and is thus suitable for molecular dynamics.
However, PB calculation is also typically very computationally demanding and
there has been much effort to develop more computationally tractable, empi-
rical approximations to the PB equation. For example, Still and co-workers
developed an empirical approximation to PB.20 Based on a generalization of
the Born equation for the potential of atoms, Still’s Generalized Born (GB)
model (and its subsequent variants from Still’s group and other groups) have
been shown to be both computationally tractable and quantitatively accurate
for some problems, including the solvation free energy of small molecules20 and
protein folding kinetics.21

8.2.3 Minimalist Models

To further simplify the model, the protein force field can be generated from the
experimental structure. Using the information of the native conformation,
attractive parts of the LJ potentials for all non-native contact pairs can be
reduced or turned off altogether. Such a potential may lead to minimized
frustration for folding (i.e. smoothing the energy landscape by removing small
energetic barriers and metastable microstates, as shown in Figure 8.2), enabling
much faster folding simulations. In many cases, the model is built by con-
sidering each amino acid residue as one particle (coarse-graining) to maximize
the simplification. Using explicit or implicit solvent models mentioned in the
above paragraphs is technically possible, though such an approach will lose
the benefit of using the minimalist model itself. Therefore, solvent effects are
usually considered using Langevin dynamics (random forces imparted on each
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simulated body to represent solvent viscosity) or can be incorporated explicitly
in the pairwise protein non-bonded interaction potential.22

8.2.4 How Accurate Are the Models?

Any question of accuracy must consider the desired experimental observable.
One natural quantity to examine is the solvation free energy of small molecules,
such as amino acid side chains23 With recent advances in high-precision free-
energy methods,23,24 one can directly compare the models to experiment within
experimental error.
For explicit solvent models,24 the solvation free energies of small molecule

analogs to amino acid side chains show a systematic shift (towards being less
soluble). This would lead to an artificial stabilization of proteins (since the
unfolded state would be less stable) and could have a significant impact on
predicted protein–protein and protein–ligand free energies. These results sug-
gest natural force-field improvements; recent work in this direction removes
this systematic shift, leading to models with zero mean error with solvation free
energy experiments and a surprisingly low RMSD (B0.4 kcalmol�1).24

How accurate are implicit solvent models? While the GB models are some-
what empirical, they have been shown to agree reasonably well with PB
calculations. More importantly, GB models have been able to accurately pre-
dict experimental results, such as the solvation free energy of small mole-
cules.20,25 In the end, experiment must of course be the final arbiter of any

Figure 8.2 Example free-energy surface for a simple two-state folder and related
surfaces derived by adding external forces or simplifications to the
simulation model, demonstrating the variation in necessary simulation
timescales for sampling of various models. Some sampling methods, such
as REMD and umbrella sampling, make use of several landscapes by
adding biasing potentials or including a large range of temperatures, while
minimalist models remove landscape frustration and/or the presence of a
non-native free-energy basin.
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theoretical method. Moreover, while PB is on much firmer mathematical
footing (i.e. one can derive it directly from the Poisson equation), one must
consider that PB itself is empirical in nature in some respects. The concept of a
dielectric is macroscopic; it is an approximation to apply this macroscopic
concept to the microscopic world of small molecules and proteins (hundreds to
thousands of atoms). However, the success of PB as a predictive tool demon-
strates the validity (or, at the very least, predictive power) of such methods and
approximations.

8.3 Sampling: Methods to Tackle the Long Timescales

Involved in Folding

Simulating the mechanism of protein folding is a great computational challenge
due to the long timescales involved. Below, we briefly summarize some methods
that have been used to address this challenge. As in any computational method,
each has its own limitations and it is natural to consider the regime of appli-
cability of each method (Figure 8.2).

8.3.1 Tightly Coupled Molecular Dynamics (TCMD)

To simulate molecular dynamics (MD) one typically integrates Newton’s equa-
tions numerically for the atoms in the system with femtosecond timesteps to
include the fast timescales of atomic motion. Thus, to reach the millisecond
timescale, many (1012) steps must be taken. While modern molecular dynamics
codes are extremely well optimized and perform typically 106 steps per CPU day,
this clearly falls short of what is needed. Using multiple CPUs in a tightly coupled
fashion to speed a single trajectory is appealing, but is an inefficient use of CPU
power (i.e. one does not get a 100� speed increase with 100 CPUs) and thus has
not been widely used to get beyond the nanosecond timescale, with the notable
exception of Duan and Kollman’s single 1 ms trajectory of the villin headpiece.26

8.3.2 Replica Exchange Molecular Dynamics (REMD)

Replica Exchange Molecular Dynamics27–31 has become a powerful technique
to explore the free-energy landscapes of proteins, with speed increases32 of
roughly 10� over traditional MD. Moreover, REMD efficiently parallelizes
with only slightly coupled networking required. However, REMD achieves its
speed increase by using a non-physical form of kinetics (in temperature replica
space). This method yields a Boltzmann-weighted ensemble after sufficient
convergence,32 but the trajectories cannot themselves be used to predict any
direct kinetic properties, although aspects related to the kinetics (such as pos-
sibly kinetically relevant intermediates) can be inferred from the resulting free-
energy landscapes.29
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8.3.3 High-temperature Unfolding

While folding times are very long from a simulation point of view, unfolding
(especially under high denaturation conditions) can be very fast – on the
nanosecond timescale.33–35 Under extreme denaturing conditions (e.g. B400K
temperature), one would expect the folded state to become only metastable,
with a low barrier to unfolding. Daggett and Levitt33 first took advantage of
this scenario, and Daggett’s group has subsequently pioneered this method to
examine a variety of proteins and compare their results to experiment, espe-
cially with a comparison of f values calculated at high-temperature folding vs.
experimental measurements.10,36 One note of caution is that the transition state
character is dependent on temperature. For example, the Gruebele lab has
found temperature-sensitive phi-values.37 Of particular significance of the im-
pact of this approach has been the ability to closely connect simulation pre-
dictions to experiment. However, applying extreme temperatures to models
developed under ambient/biological temperatures (i.e. 300� 10K) must be
done with caution: it has recently been shown that even force fields that appear
to be extremely accurate for the system studied fail to reproduce experimentally
observed temperature-dependent trends at high and low temperatures.11 While
it is possible to study protein unfolding under conditions that approximate
experiment, simulations to date trade authentic recapitulation of the experi-
mental kinetics in favor of computational tractability.

8.3.4 Low-viscosity Simulation Coupled with

Implicit Solvation Models

This is another common means to try to tackle long timescales.38–41 In regular
simulations with implicit solvent model, one typically uses the Langevin
equation for dynamics and employs a damping term consistent with water-like
viscosity. However, water is relatively viscous and such simulations can be very
costly. Instead, many groups have proposed the use of viscosities only 1/100 to
1/1000 that of water (or even no viscosity at all). While lowering the viscosity
greatly speeds the kinetics,38 the effect of such non-physical modeling in-
herently assumes a potential risk of altering not only the rate but also the
nature of the overall kinetics of the system.42 Assuming simulation con-
vergence, the correct thermodynamics should be obtained, but it must also be
understood that the thermodynamics will be based on the model, and therefore
may also miss microstates that are coupled with properties of the solvent (such
as, in this case, viscosity).

8.3.5 Coarse-grained and Minimalist Models

These kinds of models have played a large role in recent simulations of protein
folding.6,22,43 The idea is to largely trade chemical complexity for computational
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tractability. Coarse-grained models allow one to directly address a range of
hypotheses relating to general properties of folding. However, in their genera-
lity, by construction they may lack the ability to access more detailed questions
of folding (depending on the nature of the question of interest). Whereas
detailed models cannot, in general, be used to collect ensemble statistics for large
biomolecular systems, this is not true for minimalist models, and a recent study
used such a model to make a direct connection between individual folding
pathways and the bulk observed folding mechanism for a system consisting of
B5000 atoms.44

8.3.6 Path Sampling

Given an initial trajectory between the unfolded and folded regions, which can
be generated via high-temperature unfolding or similar means, this method
generates an ensemble of different pathways that join the unfolded and folded
regions. For example, Bolhuis and co-workers determined the formation order
of hydrogen bonds and the hydrophobic core in a b-hairpin.45 Using the
fluctuation-dissipation theorem,46 it is possible to calculate folding rates from
these ensembles. More recently, a new method called transition interface
sampling47 introduced an alternate method to calculate transition rates. Since
path-sampling methods are very computationally demanding, it is interesting to
consider whether one can construct an algorithm that can more efficiently
utilize simulation data (e.g. folding trajectories) in order to predict folding rates
and mechanisms.

8.3.7 Graph-based Methods

Graph-based methods sample configuration space and connect nearby points
with weights according to their transition probabilities. From these graphs, it is
possible to calculate such properties as most probable path, pfold values48 as
well as to analyse the order in which secondary structures form.49 However, the
graph representation of protein-folding pathways does not solve the sampling
problem, but recasts it, and sampling any continuous, high-dimensional space
is still a difficult challenge. Previous graph-based methods have sampled
configuration space uniformly (i.e. choosing conformations at random) or
used sampling methods biased towards the native state. Clearly, as the protein
size increases, it becomes very difficult to sample the biologically important
conformations with random sampling.

8.3.8 Markovian State Model Methods50–53

These methods have recently shown promise to allow for an atomically detailed
model with quantitative prediction of kinetics. They can take advantage of the
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benefits of many of the methods above, such as in the generation of initial
nodes, as well as build upon the methods of path sampling and graph-based
methods to use short paths to predict complex kinetics.

8.4 Validation of Simulation Methodology: Protein

Folding Kinetics

To study protein folding kinetics – and especially compare theory to experi-
ment – it is natural to ask which quantities should be compared. The most
experimentally accessible quantitative observables of two-state proteins are the
folding and unfolding rates from which one can obtain the thermodynamic
stability. Thus, it is important to validate any simulation method through
quantitative comparison to experiment with proper statistics. As rates and free
energies are the natural quantitative experimental measurements, relative or
absolute prediction of these quantities is necessary for a direct connection to
experiment and a true assessment of theoretical methodology.

8.4.1 Low-viscosity Simulations

We now consider rate predictions made using atomistic potentials based on
various approximations of the physics of inter-atomic interactions (including
especially solvent-mediated interactions). Caflisch and co-workers have pio-
neered long atomistic folding simulations using simple, computationally effi-
cient implicit solvent models. By using low (or no) viscosity in their simulations,
they accelerate the timescales involved in folding and are able to observe
multiple folding transitions in single trajectories. Though not guaranteeing
ensemble level convergence, such reversible folding transitions are strong evi-
dence that sampling is sufficient for useful thermodynamic analysis.
For example, two secondary structural motifs were studied by Caflisch et al.:

the a-helical Y(MEARA)6 peptide,54 and Beta3s, a three-stranded antiparallel
b-sheet.55 Surprisingly, the helical peptide, which was shown to contain more
helical content (and thus helical stability) than the (AAQAA)3 peptide, folded
much more slowly at 300K, with a mean folding time of B80 ns. For Beta3s, a
mean folding time of 31.8 ns was predicted at 360K, and a following study pre-
dicted a folding time of 39ns at 330K,56 both significantly faster than the B5ms
timescale reported by De Alba et al. at lower temperatures.57 Increased sampling
of Beta3s in four additional simulations of length 2.7ms or greater extended the
predicted folding time using this model to B85ns at 330K. Additional simu-
lations were also conducted to study the folding of the Beta3s mutant with the two
sets of turn GS residues replaced with PG pairs,38 with the mutant folding three
times faster than Beta3s. These inverse folding times thus remain rather high.
Dynamics at low viscosity helps tackle an important challenge of molecular

simulations. It is therefore natural to examine the strengths and weaknesses of
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this method. A non-linear relationship between folding time and viscosity was
reported by Zagrovic et al. for the folding kinetics of a 20-residue tryptophan-
cage mini-protein in the GB/SA implicit solvent model of Still et al.20 under a
range of solvent viscosities.42 Figure 8.3 plots the observed relationship be-
tween inverse rate (t¼ 1/k) and viscosity (1/g) relative to the case for water-like
viscosity (i.e. gwater¼ 91 ps�1).58 In the figure it is apparent that linear scaling of
the folding time with solvent viscosity holds for viscosities as low asB1/10 that
of water. However, below this point the folding time scales as tB g1/5. While
applying such scaling rules to the rate predictions of Caflisch and co-workers
described above (in low viscosity) would clearly bring their values closer to
experimentally established rates for these systems, the precise effect of low
viscosity for each of these systems remains unclear.

8.4.2 Estimating Rates with a Two-state Approximation

Including water-like viscosity significantly increases the required sampling time,
yet allows absolute folding kinetics to be measured directly. To this end, Pande
and co-workers have applied distributed computing to sample trajectory space

Figure 8.3 Viscosity dependence of the folding time of the Tryptophan Cage molecule
in implicit solvent. The folding times and associated errors were calculated
using the maximum-likelihood approach. Folding times and viscosities are
given relative to the folding time in water and the viscosity of water, re-
spectively. The error bars given are error propagated on the basis of the
Cramer–Rao errors for the individual folding times.

173Computer Simulations of Protein Folding



stochastically and extract rates from an ensemble dynamics (ED) perspective.21

Two-state behavior is the central concept upon which rates are extracted via
ED; dwell times in free energy minima of the conformational space are sig-
nificantly longer than transition times (i.e. barrier crossing is much faster than
the waiting period). The probability of crossing a barrier separating states A
and B by time t is thus given by

PðtÞ ¼ 1� e�kt ð8:6Þ

where k is the folding rate. In the limit of t{1=k, this simplifies to P(t)E kt and
the folding rate (according to the Poisson distribution) is given by

k ¼ Nfolded

t �Ntotal
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nfolded

p

t �Ntotal
ð8:7Þ

For example, if 10 000 simulations are run for 20 ns each and 15 of them
cross a given barrier, we obtain a predicted rate of k¼ 0.075(�0.019) ms�1,
corresponding to a folding time of 13.3(�3.4) ms. In this way, we can use many
short trajectories to investigate the folding behavior of polymers that fold on
the microsecond timescale: as we’ve shown previously, using M processors to
simulate folding results in an M-times speedup of barrier crossing events.59

When t4 1/k, as is the case for helix formation and other fast processes,
ensemble convergence to absolute equilibrium can be established, and the
complete kinetics and thermodynamics can be extracted simultaneously.60

In several recent studies, Pande and co-workers have utilized implicit solvent
models while maintaining water-like viscosity via a Langevin or stochastic
dynamics integrator with an inverse relaxation time g. In the first study,61 they
introduced a method of ‘‘coupled ensemble dynamics’’ as a means to simulate
the ensemble folding of the C-terminal b-hairpin of Protein G (1GB1) using the
GB/SA continuum solvent model of Still et al.20 and the OPLS united atom
force field16 with water-like viscosity. A total sampling time of B38 ms was
obtained, with a calculated inverse folding rate of 4.7(�1.7) ms, in good
agreement with the experimentally determined value of 6 ms.62

Other hairpin structures have been studied by the Pande group more
recently, both in an effort to gain insight into hairpin folding dynamics and
for a more thorough comparison to experimental measurements. They reported
folding and unfolding rates for three Trp zipper b-hairpins63 using the
methodology described above, including TZ1 (PDBID 1LE0), TZ2 (PDBID
1LE1), and TZ3 (PDBID 1LE0 with G6 replaced by D-proline). The relative
inverse folding rates are in good agreement with experimental fluorescence and
IR measurements provided by experimental collaborators. Unfolding rates
were also predicted with relatively strong agreement.
Beyond these investigations of simple hairpin subunits, several small proteins

were studied using an implicit solvent methodology. The first, a 20-residue mini-
protein known as the Trp cage, was shown to have an experimental folding time
of B4ms. From simulations (totaling B100ms) the folding rate was estimated
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based on a cutoff parameter in alpha carbon RMSD space: kfold (3.0 Å)¼
(1.5ms)�1, kfold (2.8 Å)¼ (3.1ms)�1, kfold (2.7 Å)¼ (5.5ms)�1, kfold (2.6 Å)¼
(6.9ms)�1, and kfold (2.5 Å)¼ (8.7ms)�1. While the predicted folding time roughly
agreed with the experimental value, the calculations illustrated the dependence of
rates upon definition of the native state, as was described above (to minimize this
dependence cutoffs must be chosen along an optimal reaction coordinate). Post
analysis of ensemble folding data is not necessarily trivial unless many folding
events are present and a stable native ensemble is easily distinguished from decoys
with similar topology. Similar rate predictions were made for two mutants of the
23-residue BBA5 mini-protein and compared to temperature jump measurements
made in the Gruebele laboratory.64 A single mutation replaced F8 with W, which
acts as the fluorescent probe, while the double mutant also included a replacement
of V3 with Y. The agreement between simulation predictions and experimental
measurements was excellent for the double mutant at 6ms and 7.5(�3.5)ms
respectively. The agreement was less striking in the case of the single mutant,
where experiment offered an upper limit of 10ms and simulation predicted 16ms,
with a range of 7 to 43ms based on the alpha carbon RMSD cutoff used (still a
notably accurate prediction).
One of the most notable simulation studies to date was the tour-de-force 1-ms

trajectory of the villin headpiece conducted by Duan and Kollman.26 Following
the methods described above, Pande and co-workers have simulated the en-
semble folding of this 36-residue three-helix bundle (PDBID 1VII) using the
GB/SA continuum solvent and the OPLS united atom force field in water-like
viscosity.65 With over 300 ms of simulation time, the folding time was predicted
to be 5 ms (1.5–14 ms using alpha carbon RMSD cutoffs of 2.7–3 Å, as described
above), which was compared to the 11-ms folding time derived from NMR
lineshape analysis. A follow-up study by Eaton and co-workers tested the
prediction using temperature-jump fluorescence and found the folding time to
be 4.3(�0.6) ms, thereby validating the rate prediction.
To study the formation of more complex protein structure, Pande and

co-workers reported unbiased folding simulations of the 23-residue mini-
protein BBA5 in explicit solvent.66 Ten thousand independent MD simulations
of the denatured conformation of BBA5 solvated in TIP3P water resulted in an
aggregate simulation time of over 100 ms. This sampling yielded 13 complete
folding events which, when corrected for the anomalous diffusion constant of
the TIP3P model, results in an estimated folding time of 7.5(�4.2) ms. This is in
excellent agreement with the experimental folding time of 7.5(�3.5) ms reported
by Gruebele and co-workers.64

Folding of the villin headpiece was first attempted by Duan and Kollman in
1998.26 Using TIP3P explicit solvent, their single 1-ms simulation did not show
complete folding, which is not surprising given the B5-ms folding time for that
protein. Pande and co-workers have recently reported folding of this protein
using the TIP3P water model and the AMBER-GS force field at 300K,67,68

thus increasing the maximum sequence size of proteins for which simulated
folding has been observed with MD. With a total sampling time of nearly 1ms,
a folding time of 10(�1.7) ms was predicted using a particle mesh Ewald
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treatment of long range electrostatics. Identical simulations using a reaction
field treatment yielded 9.9(�1.5) ms. These values are somewhat slower than the
4.3(�0.6) experimental folding time, which might be due to the slow equili-
bration previously observed for helix formation under the AMBER-GS
potential.60

What are the limitations of this two-state method? The direct observation of
folding kinetics presents difficulties, especially for larger proteins or those
without single exponential behavior. For example, folding ensembles generated
from a single unfolded model attempt to populate the unfolded ensemble and
observe folding. However, the timescale involved for the initial equilibration
and the timescale necessary for chain diffusion across the folding barrier scale
dramatically with chain length.69 These factors make it increasingly difficult to
observe both equilibration and folding for large proteins. In addition, Paci et al.
have shown that folding events in extremely short trajectories can proceed from
high-energy initial conformations.41 Deviations from two-state behavior can
also make interpretation of ensemble kinetics difficult,70 and, given the short
timescale of current folding simulations (10–1000 ns), any obligate intermediate
with an appreciable dwell time (1–100 ns) may represent a sufficient deviation.
In a downhill folding scenario, the principal limitation of the ensemble dy-
namics approach is the potentially lengthy and temperature-dependent time-
scale for protein conformational diffusion.71 Fortunately, these challenges may
not be intractable: the timescale for downhill equilibration to a relaxed un-
folded ensemble may require long simulations,72 but should be much faster
than folding. Also, the detection of intermediates and multiple pathways can be
accomplished by the comparison of folding and unfolding ensembles. Finally,
these concerns may also be addressed with new Markovian State Model
methods,51–53,73 described in more detail below.
Regardless of the relatively strong agreement between ensemble simulations

in implicit solvent and experimental rate measurements, several factors must be
considered in interpreting such simulation results. Lacking a discrete repre-
sentation of water, these studies ignore the potential role that aqueous solvent
might play in the folding process. Furthermore, the compact nature of the
relaxed unfolded state ensembles observed using the GB/SA solvent model may
pose problems for the folding of larger proteins, such as trapping in compact
unfolded conformations.

8.4.3 Markovian State Models (MSMs)

The two-state methods described and applied above work well if there are no
intermediate states accumulating on timescales comparable to the trajectory
length or longer (e.g. greater than 20–100 ns) and if the chains are relatively
short (e.g. less than 50 residues). However, as one examines the folding of larger
and more complex proteins, the two-state approximation will surely eventually
break down and reaching even just the relaxation time for a given chain will
become a challenge. Also, even if the folding is two state, the simple diffusion of
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the polymer chain (which scales like the number of residues squared or cubed)
will start to require very long trajectories. In anticipation of these problems, we
have proposed a new method: Markovian state models.51–53,73

Markovian state models transform simulation data gathered from MD tra-
jectories into a kinetic model that includes transition time data. As opposed to
traditional transition path sampling analysis,45,47,74 this method would in-
corporate all of the simulated data into the results, therefore potentially yielding
an increase in efficiency. Our MSM model assumes first-order Markovian
transitions between states: simply put, we assume that the next state visited
during dynamics will depend solely on the current state and not on previous
states visited. Moreover, from an MSM, one can easily calculate any kinetic
quantity which can be related to some structural property, such as pfold

75 for all
configurations sampled and the mean first passage time (MFPT) from the un-
folded state to the folded state. This method also provides a compact repre-
sentation of the pathways in the system, useful for understanding the
mechanisms involved in folding. MSM methods improve on the current graph-
based techniques by sampling points using molecular dynamics (MD), thereby
greatly increasing the probability that the configurations that are included are
kinetically relevant. In addition, the simulation time between points inherently
captures transition times, making the direct calculation of folding rates possible.
Early results from MSM methods appear to be promising. Results on a beta

hairpin51 and the villin headpiece and protein A68 find quantitative agreement
with experimental folding times, allowing for a quantitative prediction of
timescales considerably longer than the individual trajectories used to construct
the MSM. Moreover, these methods do not assume two-state behavior and
thus can serve as a test of the two-state approximation; the agreement with two-
state behavior in these methods supports employing the two-state method in
simple proteins, although it is likely that the two-state approximation will
break down for larger, more complex proteins or proteins that have unusual
kinetics, such as putative downhill folders.

8.4.4 Other Approaches

While the studies described above offer insight into the most elementary events
in protein folding, a number of studies have recently been published on the
formation and/or denaturation of larger protein structures. Daggett and co-
workers have reported unfolding rate predictions using explicit solvent models
with direct experimental comparisons. The 61-residue engrailed homeodomain
(En-HD) forms a three-helix bundle similar to the villin headpiece and is known
to undergo thermal denaturation at 373K with a half-life predicted by long
extrapolation of experimental kinetic data at lower temperatures of 4.5 to 25 ns.
Mayor et al. simulated the thermally induced unfolding of En-HD using the
F3C water model76 in ENCAD77 at this temperature with an unfolding rate on
the tens of nanoseconds timescale.10,78 The time needed to reach the putative
transition state at 75 and 100 1C, 60 ns and 2 ns respectively, was roughly
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consistent with the extrapolated experimental unfolding rates (precise rates
cannot be extracted from a single unfolding event due to the stochastic nature
of protein dynamics).
Bolhuis simulated the folding of the C-terminal b-hairpin of protein G using

the transition interface sampling method described above to extract transition
kinetics.45 At 300K, with an equilibrium constant of B1, the predicted folding
time of 5 ms using the TIP3P explicit solvent is in good agreement with the
experimental rate of 6 ms62 as well as the rate predicted by Zagrovic et al. using
an implicit solvent.61 The observed agreement suggests that path sampling will
be useful in future simulation studies to elucidate the kinetics and mechanisms
inherent to protein folding, and it will be interesting to see such methods ap-
plied to larger, more complex systems.
Peptides and mini-proteins allow for complete and accurate sampling of

folding and unfolding events via simulation at biologically relevant tempera-
tures. Pande and co-workers recently studied the helix-coil transition in two
21-residue a-helical sequences and demonstrated complete equilibrium ensem-
ble sampling for multiple variants of the AMBER force field,11 as shown in
Figure 8.4, thus allowing quantitative assessment of the potentials studied.
Observing that the previously published AMBER variants resulted in poor
equilibrium helix-coil character in comparison to experimental measurements,

Figure 8.4 Time evolution and convergence of Fs peptide folding ensembles under the
AMBER-94, AMBER-GS, AMBER-99, and AMBER-99f potentials.
The plots include, from top to bottom, the mean a-helix content, mean
contiguous helical length, and mean number of helical segments per con-
formation according to classical LR counting theory. Native ensembles
that converge with corresponding gray folding ensembles are shown in
black. Signal noise in the longer time regime is due to fewer simulations
reaching that timescale (additional data at long times have been removed
for visual clarity).
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they tested a new variant denoted AMBER-99f and showed that it more ad-
equately captured the helix-coil dynamics. Based on a multi-state Markovian-
based analysis, a primary relaxation time of 151 ns was reported using the more
accurate AMBER variant, which agreed well with the 160(�50) ns measured
experimentally by Williams et al.79

Minimalist models have also continued to garner attention recently. It is
usually not feasible to obtain direct kinetics information from Go-like models
due to difficulty in interpreting the timestep in Go model simulations in terms
of a physically measurable quantity. However, it was recently reported that Go
model simulations can still be useful in predicting folding timescales of various
proteins if the time and temperature are scaled properly to experimental
measurements.80 One caveat in this approach will be the necessity of a rather
large training set to obtain a calibration data for such scaling. However, con-
sidering the tractability for simulation of large systems using minimalist
models, it will be interesting to see whether such an approach can be generally
applied for other systems.

8.5 Predicting Protein Folding Pathways

8.5.1 Kinetics Simulations

The folding pathway is arguably the most interesting prediction associated with
folding simulations. As our ability to observe long-timescale transitions
improves, it becomes increasingly important to clearly communicate the
observed mechanism. Qualitative descriptions of the folding pathway can only
be loosely interpreted in comparison to experiment. First, as mentioned above,
results derived from folding simulations can be sensitive to data analysis. For
example, Swope and co-workers produced several folding mechanisms for the
hairpin from protein G by varying their hydrogen bond definition.52,73 Second,
there are potential semantic issues; a researcher might frame their discussion of
b-hairpin folding in terms of zippering, secondary versus tertiary contacts, or
diffusion-collision versus nucleation-condensation.
The order of ‘‘events’’ is a natural description of a mechanism, but an

optimal description of mechanism should account for heterogeneity as well as
the interplay between secondary and tertiary contacts. An excellent and recent
example comes from protein A. Fersht and co-workers have qualitatively
compared several published simulation predictions of the protein A folding
pathway to experiment.81,82 None of the published atomistic simulations were
completely consistent with experiment, emphasizing the need for improved
simulation predictions of the folding pathway, and improved quantitative
means for comparing pathway predictions.
The collaborative effort between the Fersht experimental laboratory and the

Daggett simulation laboratory has shed light on an entire family of unfolding
mechanisms. The homeodomains, small three-helix proteins, exhibit a spectrum
of folding processes, from concurrent secondary and tertiary structure
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formation (nucleation-condensation mechanism) to sequential secondary and
tertiary formation (framework mechanism).83 They present putative transition
state conformations (two each at 373 and 498K for En-HD; seven at 498K for
c-Myb; and two at 498K for hTRF1) from high-temperature unfolding for En-
HD, c-Myb, and hTRF1, and estimate bT values (0.83, 0.83, 0.8 respectively)
that roughly agree with the experimental bT values (0.83, 0.79, 0.90). Excluding
the mutation of two charged residues, correlation coefficients of 0.79 and 0.74
for En-HD and c-Myb were obtained between the S and F values. Gianni et al.
report that folding of En-HD resembles the diffusion collision mechanism more
than c-Myb and hTRF1 because the helices are nearly fully formed in the
transition state. They do state that movements from diffusion-collision to
nucleation-condensation are not detected simply by the helical content of the
folding transition states but through analysis of whether the secondary and
tertiary structures are formed simultaneously.83 Given this strategy we feel it is
particularly important to generate a statistically meaningful number of transi-
tions to judge the relative timing of events between related molecules.
Through the two-state approximation and distributed computing, the

Pande laboratory has examined the folding of several small, two-state proteins.
The mechanism found varied with the protein studied. It remains to be seen
if a more comprehensive mechanistic survey of many small, two-state pro-
teins will reveal underlying mechanistic similarities or model dependencies.
In several cases, distributed computing allowed direct comparison of the per-
formances of different force fields. For example, simulations of the C-terminal
beta hairpin of protein G35,61 found that the initial states of folding were
the hydrophobic collapse of the small hydrophobic core, followed by formation
of hydrogen bonds.
Simulations of a small zinc finger fold (BBA5) found a different mecha-

nism:64 the secondary structure formed first and then independently collided to
form the folded state, analogous to what one would expect from a diffusion-
collision model; this is perhaps not surprising in hindsight, considering that
BBA584 is a de novo designed protein and its independent elements may be more
stable than in typical proteins. Finally, simulations of the villin headpiece found
a different mechanism, in which formation of the rough topology was found
early, following by the locking in of the side chains.65

It is interesting and important to consider the role of force-field variation in
the determination of the folding mechanism. Moreover, beyond the force field
used to describe protein-protein interactions, one may also expect variations
due to the water model chosen, and differences between minimalist models and
more detailed, full atomic models. A natural way to quantitatively examine
these differences in mechanism is through a correlation of pfold values.85 As the
pfold value gives a quantitative measure of the location of a given conform-
ation along the folding pathway (pfold near 0 means that the conformation is
kinetically close to the unfolded state and pfold close to 1 means it is kinetically
close to the folded state), a correlation of pfold values between two different
models (force fields, solvent models, etc.) and yield a quantitative comparison
between the kinetic mechanisms that would be predicted.AQ1
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Upon comparing several different types of explicit water models, implicit
water models, and minimalist models (all-atom and Ca Go models), Rhee and
Pande85 found that different explicit models yielded quantitatively similar
folding mechanisms. Comparing explicit solvent to implicit solvent models
found some greater variation, consistent with other types of comparisons be-
tween explicit and implicit solvent.86,87 When comparing to minimalist models,
little correlation was found, indicating that for the protein studied (BBA5),
minimalist models could not recapitulate the dynamics described by more de-
tailed models and, moreover, minimalist models did not agree with each other
(there was a large discrepancy between all-atom and Ca Go models). While it
still remains to be seen if these results will hold for larger, more complex
proteins (indeed, BBA5 is a small, human-designed protein and thus may be
unusual), these results suggest that there may indeed be differences, as well as
laying out a quantitative method for making such comparisons in the future.

8.5.2 Thermodynamics Simulations

The success of thermodynamic methods in the prediction of the relevant folding
pathways rests on sampling the entire available phase space. This is because the
dominant pathways can be correctly identified only when the relative importance
of various intermediates are known. Two major bottlenecks naturally emerge for
a correct sampling of the vast phase space: the high dimensionality of protein
configuration space and the kinetic trapping during simulations. The followings
will revisit well-known methods that try to overcome these difficulties.
In the original landscape approach as pioneered by Brooks and co-workers,6

the free-energy landscape or potential of mean force (PMF) is generated from
the equilibrium population distribution. Because it is excessively time consuming
to reach equilibrium for high-dimensional protein molecules with conventional
molecular dynamics, simulations are performed with umbrella sampling. An
additional potential (usually a quadratic or ‘‘umbrella’’ potential) is added to the
original Hamiltonian of the system to bias the sampling. By adjusting the bias,
the size of the available conformational space can be reduced to expedite the
equilibration within the biased Hamiltonian. A series of biased simulations are
recombined afterwards to remove the bias in a mathematically strict way using
the weighted histogram analysis method.88 The population distribution P(q)
then can be converted to the free energy with F(q)¼�ln P(q). With this
approach, Brooks and co-workers have obtained the free-energy landscape
and folding dynamics of an a-helical protein (Protein A89), an ab mixed protein
(GB190,91), and a mostly b protein (src-SH392) with numerous successful
comparisons to experiment. We refer the reader to an excellent review.6

Umbrella sampling studies produce informative free-energy landscapes but
assume that degrees of freedom orthogonal to the surface equilibrate quickly.
The molecular dynamics time needed for significant chain movement could
significantly exceed the length of typical umbrella sampling simulations (which
are each typically on the nanosecond timescale). However, in spite of this
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caveat, umbrella sampling approaches have been very successful. One expla-
nation for this success lies in the choice of initial conditions: umbrella sampling
simulations employ initial coordinates provided by high-temperature unfolding
trajectories. This is a recurring theme: without lengthy simulations, the initial
conformations are crucially important, and it appears that unfolding produces
reasonable initial models.
Even though umbrella sampling can expedite the sampling by simulating

multiple trajectories at the same time, kinetic trapping or slow orthogonal de-
grees of freedom may still dominate within each umbrella potential. A number
of techniques have been developed to overcome this kinetic trapping. Mitsutake
et al. have provided an excellent review of these generalized ensemble methods.93

We will focus on replica exchange molecular dynamics (REMD), which has
been widely used in protein-folding simulations. In this approach, a number of
simulations (‘‘replicas’’) are performed in parallel at different temperatures.
After a certain time, conformations are exchanged with a Metropolis prob-
ability. This criterion ensures that the sampling follows the canonical Boltzmann
distribution at each temperature. Kinetic trapping at lower temperatures is
avoided by exchanging conformations with higher-temperature replicas. This
method is easier to apply than other generalized ensemble methods because it
does not require a priori knowledge of the population distribution.
After Sugita and Okamoto demonstrated its effectiveness with a gas-phase

simulation of the pentapeptide Met-enkephalin,27 Sanbonmatsu and Garcia
obtained the free-energy surface of the same system using explicit water.28 With
16 parallel replicas they observed enhanced sampling (at least B5�) compared
to conventional constant temperature molecular dynamics. Because the method
is quite simple and because it is trivially parallelized in low-cost cluster en-
vironments, it gained wide application rapidly. Berne and co-workers applied
this method to obtain a free-energy landscape for b-hairpin folding in explicit
water using 64 replicas with over 4000 atoms.94 With the equilibrium ensemble
and the free-energy landscape in hand, they reported that the b-hairpin
population and the hydrogen-bond probability were in agreement with ex-
periments, and proposed that the b strand hydrogen bonds and hydrophobic
core form together during the folding pathway.
If care is taken to fully reach equilibrium,32 REMD becomes powerful for

elucidating the folding landscape. For example, Garcia and Onuchic applied
the method to a relatively large system, protein A.29 With 82 replicas for more
than 16 000 atoms with temperatures ranging from 277 to 548K, and with
B13 ns molecular dynamics simulations for each replica, they reported con-
vergence to the equilibrium distribution with quantitative determination of the
free-energy barrier of folding.

8.6 Conclusions

In the end, an understanding of complex biophysical phenomena will require
computer simulation at some level. Most likely, experimental methods will
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never yield the level of detail that can be reached even today with computer
simulations. However, the great challenge for simulations is to prove their
validity. Thus, it is naturally the combination of powerful simulations with
quantitative experimental validation that will elucidate the nature of how
proteins fold.
How well do protein folding kinetics simulations currently compare with

experiment? While prediction of relative rates (e.g. demonstrating a correlation
between experimental and predicted rates) is valuable, prediction of the abso-
lute rate without free parameters is a more stringent test. Though calculation of
absolute rates is computationally demanding, we expect such absolute com-
parisons to become more common (for increasingly complex proteins) with the
advent of new methods and increasing computer power. Finally, we stress that
a quantitative prediction of rates is not sufficient to guarantee the validity of a
model. The ability of fairly different models to quantitatively predict folding
rates strongly suggests that more experimental data are needed to further
validate simulation. Additionally, several coarse-grained calculations have been
employed to study folding and unfolding rates.80,95,96

It is also interesting to look to what’s on the near horizon. New advances in
computational methods have already enabled single trajectories to reach the
microsecond timescale routinely, without using a supercomputer, either by
using multi-core PCs97 or streaming processors, such as Graphics Processing
Units (GPUs) or the Cell Processor in PS3s.98 With microsecond length trajec-
tories, fast-folding proteins can now be examined directly, with thousands of
trajectories over multiple microsecond timescales directly enabling a full statis-
tical comparison of kinetics between simulation and experiment.97 Moreover,
recent advances in force fields should allow for a significant increase in
accuracy, especially with new advances in polarizable force fields.99,100 The
combination of the more advanced computational methods, with modern
polarizable force fields, and the sampling power of Markovian state models
should yield a potent combination to accurately predict folding properties on
the microsecond to millisecond timescale for small, single-domain proteins
in the very near future, and likely beyond to the second timescale in the
next decade.
The ability to quantitatively predict rates, free energies, and structure from

simulations based on physical force fields reflects significant progress made over
the last five years. It also draws attention to a new challenge. Even the pre-
diction of experimental observables, such as rates, within experimental un-
certainty does not prove that the simulations will yield correct insight into the
mechanism of folding. Indeed, recent work suggests that computational models
can both agree with experiment, but disagree with each other.66 Also, observing
that a particular residue appears to participate in a non-native contact does not
necessarily imply that mutating this position will accelerate folding; for
example, Zagrovic and Pande65 found non-native interactions in their simula-
tions, but did not predict that removing this would necessarily alter the rate
(indeed, the simulations performed could not predict a rate change in this case
and thus this result is not necessarily in disagreement with the experiment.101
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However, these sorts of comparisons greatly underscore the need for direct,
quantitative comparison between experiment and theory over a broad range of
observables as this is the only way to unambiguously test simulation predic-
tions. We must therefore push the link between simulation and experiment
further by connecting the two with new observables, multiple techniques, and
increasingly strict quantitative comparison and validation of simulation
methods. Without more detailed experiments, we may not be able to sufficiently
test current simulation methodology and the trustworthiness of refined simu-
lations may remain unclear. Nonetheless, the ability to predict rates, free
energies, and structure of small proteins is a significant advance for simulation,
likely heralding even more significant advances over the next five years.
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