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Abstract: Molecular dynamics simulations of the RN24 peptide, which includes a diverse set of structurally heter-

ogeneous states, are carried out in explicit solvent. Two approaches are employed and compared directly under iden-

tical simulation conditions. Specifically, we examine sampling by two individual long trajectories (microsecond

timescale) and many shorter (MS) uncoupled trajectories. Statistical analysis of the structural properties indicates a

qualitative agreement between these approaches. Microsecond timescale sampling gives large uncertainties on most

structural metrics, while the shorter timescale of MS simulations results in slight structural memory for beta-struc-

ture starting states. Additionally, MS sampling detects numerous transitions on a relatively short timescale that are

not observed in microsecond sampling, while long simulations allow for detection of a few transitions on significantly

longer timescales. A correlation between the complex free energy landscape and the kinetics of the equilibrium is high-

lighted by principal component analysis on both simulation sets. This report highlights the increased precision of the

MS approach when studying the kinetics of complex conformational change, while revealing the complementary

insight and qualitative agreement offered by far fewer individual simulations on significantly longer timescales.
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Introduction

Until recently, the difference between the timescales of events

observed experimentally or theoretically prevented the results of

computer simulations from being directly comparable with

experiments. The advances in simulation algorithms and com-

puter power on the one hand, and the increase in time-resolution

of many experimental approaches on the other hand, now allow

for simulations of peptide folding on a timescale comparable to

that of experiments.1–5 The folding of secondary structure ele-

ments in real proteins takes place on the nanosecond to micro-

second timescale.6,7 Although the simulation of the folding of

secondary structure elements is now within reach for molecular

simulations with atomistic detail, the formation of protein terti-

ary structure in longer polypeptide chains remains a challenge.

Because of the stochastic nature of folding, even when protein

folding takes place on a timescale compatible with molecular

simulations, one should simulate hundreds of folding events in

order to understand which folding paths (mechanisms) are statis-

tically most probable.

Several techniques have been proposed to bridge the time-

scale gap employing all-atom simulations including loosely

coupled parallel simulations, such as replica exchange molecular

dynamics,8 Markovian model approaches,9–15 independent paral-

lel trajectories, and ensemble dynamics.5 In the latter approach,

based on the realization that overcoming an energy barrier is a

stochastic process characterized by a distribution of crossing

times, many short (MS) simulations are performed.16,17 This

approach has been successfully applied to study the folding of

peptides,3,5,16 small proteins,18,19 and small RNAs20,21 using a

variety of solvent models.
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A complication arises if one considers that escaping from a

local minimum in a multidimensional space may involve differ-

ent transition states, corresponding to different transition times.

Moreover, the spontaneous search of the energy minimum may

involve escaping a succession of local energy minima that nec-

essarily lead to lag phases in the folding kinetics. It has been

detailed by Fersht that using many short independent simulations

is perfectly valid once the timescale of each individual simula-

tion is longer than the lag phases of the folding process.22 Paci

et al. studied the folding of a small protein using a simple model

implicit solvent model and found for that system, the folding

rate is estimated correctly using the MS approach when trajecto-

ries longer that 1/100 of the average folding time are considered,

and the sequences of events is not necessarily representative of

the folding pathways when short trajectories are considered.23

Moreover, using simulations that are too short compared with

the equilibration time of the system would not only yield incor-

rect kinetics, but also incorrect thermodynamics for the system,

as the sampled structures in a short simulation will depend on

the starting conformation more strongly than in a long simula-

tion, if a simple two state assumption is made (this is especially

valid for systems that have several states with comparable stabil-

ity). However, a Markov State Model analysis for this data was

not made and would likely have resolved these issues.

How short can independent MS simulations be while still

providing correct thermodynamic and kinetic results? Does this

depend on the length of the peptide sequence only, or also on

other factors? And how do results from longer simulations com-

pare with results from many shorter ones? These questions

prompted us to investigate the folding of a small natural peptide

using both the MS approach as well as by sampling few long

(FL) trajectories, in both cases using an explicit solvent model.

We note that distributed computing networks can provide long

trajectories as well as short ones (indeed, the long trajectories

presented here were computed with desktop computers), and

emphasize that the comparison being made here is not one of

‘‘local sampling versus distributed computing,’’ but rather one of

few long trajectories versus many shorter simulations, both of

which can be sampled on various architectures including distrib-

uted computing networks, localized supercomputers, and large

processing clusters. We note that in our analysis of MS trajecto-

ries here, we are doing a naive analysis (direct analysis of the

MS trajectories and employing a two-state model), rather than

some more sophisticated methods which have recently been

used, such as Markov State Models (MSM); an MSM approach’s

goal is to explicit yield converged results with rather short tra-

jectories9,14,15, but requires a more complex analysis than what

is performed here.

The peptide chosen for this study was RN24, an analogue of

the C-peptide, constituted by the 13 amino-terminal residues of

ribonuclease A (sequence Ac-AETAAAKFLRAHA-NH2). The

peptide sequence is of considerable interest because, despite

being very short, it appears to have complex dynamics with mul-

tiple states and nonexponential folding kinetics. Indeed, RN24

was initially found to form a helix in water solution at low tem-

peratures,24 but more recent NMR experiments in similar condi-

tions revealed that at least three kinds of conformations are

adopted: a-helical, partially extended, and bent conformations.25

Because of the very short size, this peptide can be simulated for

a relatively long time and is therefore an ideal test case to probe

the questions formulated above.

Methods

FL Sampling

An ideal a-helical structure and a random coil structure were

generated using the Macromodel software package and used as

starting structures for our simulations. The elongated random

coil structure with minimal self-interactions was chosen to avoid

the introduction of any biases toward any folded structure. The

histidine ring was protonated only at one nitrogen atom, so that

the total charge of the peptide was 11 (due to the presence of a

glutamate, a lysine, and an arginine residue). The peptide was

placed in a dodecahedral box large enough to contain 1.2 nm of

solvent around the peptide in helical conformation (2782 water

molecules) and 0.6 nm of solvent for the random coil conforma-

tion (2828 water molecules). XX, YY, and ZZ components of

the dodecahedral box are on average about 4.9, 4.9, and 3.5 nm,

yielding a volume of �84 nm3. The simple point charge (SPC)

water model was used and one chloride ion was added to obtain

electroneutrality. All simulations were carried out in version

3.1.4 of the GROMACS package26 using the GROMOS96 43A1

force field.27 All bond lengths were constrained to their equilib-

rium values using the SETTLE algorithm28 for water and the

LINCS algorithm29 for the peptide. Dummy atom constructions

and heavy hydrogen atoms were used (4 a.u.) according to a

published procedure,30 allowing for an integration time step of 5

fs. The neighbor list for the calculation of nonbonded interac-

tions was updated every four timesteps. In all simulations, peri-

odic boundary conditions were used and the calculation of elec-

trostatic forces utilized the Particle Mesh Ewald (PME)

method31,32; the real-space interactions were evaluated using a

0.9 nm cutoff, and the reciprocal-space interactions were eval-

uated on a 0.12-nm grid with fourth-order B-spline interpolation.

The relative error for the Ewald sum in the direct and reciprocal

space, controlled in GROMACS by the parameter ewald_rtol,

was set to 1025. A twin-range cutoff of 0.9–1.4 nm was used

for the calculation of Lennard-Jones interactions. In each simula-

tion the peptide and solvent were coupled separately to a tem-

perature bath at 300 K, using the Berendsen algorithm with sT
5 0.1 ps,33 and the pressure was kept at 1 bar using weak pres-

sure coupling with sP 5 4.0 ps.33

The systems were energy minimized with a steepest descent

method for 5000 steps. The solvent was then equilibrated in a

50 ps MD run with position restraints on the peptide. The sol-

vent equilibration run was followed by another 100 ps run with-

out position restraints on the peptide, in which all atoms were

given an initial velocity obtained from a Maxwellian distribution

at the desired initial temperature of 300 K. Two simulations

were then carried out for 1.6 ls each and will be referred to

herein as the few long (FL) trajectories, with FL-ran indicating

the random coil elongated starting structure and FL-hel the heli-

cal starting structure. Peptide structures were saved for analysis

every 1 ps.
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MS Sampling

Four sets of many shorter (MS) simulations were carried out

using the Folding@Home distributed computing network (http://

folding.stanford.edu) with four different starting structures; the

same random coil and helical starting structures from the FL

simulations were used, together with b-hairpin and parallel b-
sheet structures sampled during the FL simulations. These simu-

lations are referred to herein as MS-ran, MS-hel, MS-hp, and

MS-sh. A summary of the simulations performed is reported in

Table 1. The same force field and identical simulation parame-

ters were used in all MS and FL simulations (see earlier). Each

of the four sets of MS simulations consisted of �800 trajectories

of �250 ns each, for a total simulation time of about 800 ls,
with structures saved every 100 ps.

Analysis

For most structural metrics, uncertainties were estimated using

the procedure described by Hess34 as implemented in GRO-

MACS. Uncertainties obtained with this procedure are substan-

tially equivalent to the standard error. For cluster populations,

the standard error is given as an estimate for uncertainties. Dif-

ferences between data sets were estimated using the ‘‘Analysis

of variance’’ (ANOVA) technique. ANOVA is a statistical

method that allows to compare the average values of one vari-

able in three or more data sets, and evaluate the significance of

the differences. One-way ANOVA is useful when only one inde-

pendent variable is present in the data set. The ‘‘null hypothesis’’

is that the average (of the dependent variable) is the same for all

groups, i.e., the sets sample from the same population. ANOVA

is used to calculate the probability (p-value) of the null hypothe-

sis being true. If the p-value resulting from the ANOVA proce-

dure is low (usually less than 0.05, by convention), then the dif-

ference between the averages is considered statistically signifi-

cant, and the conclusion is that the data sets are not equivalent.

When using block averages as data points for ANOVA, the anal-

ysis is sensitive to the size of the block. To simplify the analy-

sis, standard deviations for all structural metrics were calculated

using block averaging over blocks of the same size. The block

size was chosen to be 1/4 of the length of each individual FL

trajectory; this is much larger than the correlation time for all

structural metrics. We used a MacOS X version of the statistical

package R (www.r-project.org) for ANOVA.

Interproton distances were calculated from all simulations as

hd(t)26i21/6 averages, and violations were derived as dviol 5
hd(t)26i21/6 2 dexp, where dexp is the distance measured experi-

mentally. Since aliphatic hydrogen atoms in the GROMOS96

43A1 force field are treated using a united-atom model, their

position at each time in the trajectory was back-calculated

assuming an ideal geometry. Secondary structure assignments

were based on the DSSP algorithm.35 The number of helical

(Nh), beta (Nb), and turn (Nt) residues was calculated based

on DSSP assignments. Unless specified otherwise, ‘‘beta’’

structure described herein refers to both b-hairpin and b-sheet
conformations. T

a
b
le

1
.
S
u
m
m
ar
y
o
f
th
e
S
tr
u
ct
u
ra
l
F
ea
tu
re
s
an
d
th
e
S
ec
o
n
d
ar
y
S
tr
u
ct
u
re

E
le
m
en
ts
o
f
th
e
P
ep
ti
d
e
C
o
n
fo
rm

at
io
n
s
S
am

p
le
d
in

E
ac
h
S
im

u
la
ti
o
n
S
et
.

F
L
-r
an

F
L
-h
el

M
S
-r
an

M
S
-h
el

M
S
-h
p

M
S
-s
h

F
L
(t
o
ta
l)

M
S
(t
o
ta
l)

S
ta
rt
in
g
co
n
fo
rm

at
io
n

E
lo
n
g
at
ed

ra
n
d
o
m

co
il

a-
h
el
ic
al

E
lo
n
g
at
ed

ra
n
d
o
m

co
il

a-
h
el
ic
al

b-
h
ai
rp
in

P
ar
al
le
l
b-
sh
ee
t

–
–

N
u
m
b
er

o
f
si
m
u
la
ti
o
n
s

1
1

�8
0
0

�8
0
0

�8
0
0

�8
0
0

2
�3

2
0
0

T
o
ta
l
si
m
u
la
ti
o
n
ti
m
e
(l
s)

1
.6

1
.6

�2
0
0

�2
0
0

�2
0
0

�2
0
0

3
.2

�8
0
0

G
at
h
er
in
g
si
m
u
la
ti
o
n
ti
m
e
(l
s)

1
.3
7
5

1
.3
7
5

5
.5

5
.5

5
.5

5
.5

2
.7
5

2
2

\
R
g[

(n
m
)

0
.6
7
2
6

0
.0
0
7

0
.6
7
0
6

0
.0
7

0
.6
5
9
6

0
.0
0
1

0
.6
6
6
6

0
.0
0
1

0
.6
6
4
6

0
.0
0
1

0
.6
5
2
6

0
.0
0
1

0
.6
7
2
6

0
.0
0
7

0
.6
6
0
6

0
.0
0
1

C
o
n
fo
rm

at
io
n
s
w
it
h
R
g
[

0
.8

n
m

0
.0
5
1
%

0
.0
3
4
%

0
.0
3
0
%

0
.0
2
8
%

0
.0
2
3
%

0
.0
1
8
%

0
.0
4
2
%

0
.0
2
5
%

A
v
er
ag
e
n
u
m
b
er

o
f
h
el
ic
al

re
si
d
u
es

1
.1
5
6

0
.7
4

0
.8
2
6

0
.3
7

0
.9
2
6

0
.0
3

1
.1
1
6

0
.0
3

0
.8
0
6

0
.0
3

0
.7
0
6

0
.0
3

0
.9
9
6

0
.4
2

0
.8
9
6

0
.1
5

A
v
er
ag
e
n
u
m
b
er

o
f
b
et
a
re
si
d
u
es

1
.2
9
6

0
.2
8

1
.6
1
6

0
.3
2

1
.5
1
6

0
.0
5

1
.4
6
6

0
.0
5

2
.0
6
6

0
.0
7

1
.7
8
6

0
.0
5

1
.4
5
6

0
.3
0

1
.7
0
6

0
.0
3

A
v
er
ag
e
n
u
m
b
er

o
f
tu
rn

re
si
d
u
es

1
.4
1
6

0
.1
1

1
.2
9
6

0
.2
1

1
.3
9
6

0
.0
4

1
.3
3
6

0
.0
3

1
.4
1
6

0
.0
4

1
.2
2
6

0
.0
2

1
.3
4
6

0
.1
5

1
.3
3
6

0
.0
3

R
es
u
lt
s
ar
e
g
iv
en

as
av
er
ag
e
6

es
ti
m
at
ed

er
ro
r
(s
ee

M
et
h
o
d
s)
.
T
h
e
ra
d
iu
s
o
f
g
y
ra
ti
o
n
w
as

ca
lc
u
la
te
d
o
n
al
l
at
o
m
s.
B
o
th

th
e
ra
d
iu
s
o
f
g
y
ra
ti
o
n
an
d
th
e
se
co
n
d
ar
y
st
ru
ct
u
re

co
n
te
n
t
w
er
e
ca
lc
u
-

la
te
d
ex
cl
u
d
in
g
th
e
in
it
ia
l
2
2
5
n
s
fr
o
m

ea
ch

si
m
u
la
ti
o
n
.
E
rr
o
r
es
ti
m
at
es

ar
e
ca
lc
u
la
te
d
u
si
n
g
a
b
lo
ck

av
er
ag
in
g
p
ro
ce
d
u
re

d
es
cr
ib
ed

b
y
H
es
s.
2
9

3Molecular Simulation of Multistate Peptide Dynamics

Journal of Computational Chemistry DOI 10.1002/jcc



Results

Comparison of MS and FL sampling

In all simulations the peptide explores many kinds of secondary

structures, ranging from ideal a-helix to b-hairpin. Figure 1

shows the secondary structure as a function of simulation time

in the FL simulations. In Figure 2, the ensemble average number

of helical, beta, and turn residues is plotted as a function of sim-

ulation time in each of the four MS sets. The metrics do not

converge completely, yet the four ensembles show similar sec-

ondary structure content after �225 ns of simulation. For this

reason, all the analyses described below were carried out only

on the ensembles of structures collected after 225 ns, both in the

MS and in the FL simulations. This subset contains 22 ls for

the MS set and 2.75 ls for the FL set. The average population

of helical, turn, and beta secondary structures is qualitatively

similar in the FL and MS sets (Table 1).

Estimates of the error on the number of residues with a cer-

tain secondary structure were calculated by block averaging

(using a procedure described by Hess34). The uncertainties on

secondary structure metrics are much larger for the FL than for

the MS sets. It is interesting to notice that FL trajectories start-

ing from the helical conformation have the lowest average heli-

cal content; in contrast, the MS simulations starting from the

helical conformation have the highest mean helical content and

MS simulations starting from the b-hairpin conformation have

the highest beta content. Although the number of turn residues

shows good agreement both in FL and MS sets, FL simulations

appear to predict lower number of beta residues and higher num-

ber of helical residues. To determine the extent to which the dif-

ferences in secondary structure in the FL and MS sets were stat-

istically meaningful, we used the analysis of variance (ANOVA)

technique. MS data sets were split into four subsets, so that each

subset had the same size as each of the FL sets. Then each MS

subset and each FL set was divided into four blocks; the block

size (343.75 ns) was larger than the portions of the simulations

discarded as ‘‘equilibration’’ and larger than the correlation time

for all structural metrics. When we consider the number of heli-

cal residues, one-way ANOVA shows that the two FL sets are

statistically equivalent (p-value: 0.66) and that the differences

between the FL and the combined MS data sets are not statisti-

cally significant (p-value: 0.72). The MS subsets generated from

the same starting structure are also always statistically equiva-

lent (p-values [ 0.66 in all four cases), but when all MS sets

with different starting structures are considered the p-value is

�1026, indicating that the sets are not equivalent. Interestingly,

differences are found to be not statistically significant if we con-

sider the combined MS-ran and MS-hel sets, as well as the com-

bined MS-hp and MS-sh sets; both combinations are also found

to be equivalent to the combined FL sets. These apparently con-

flicting results are explained by the large uncertainties in the FL

sets. Because the variance in FL sets is always larger than in

MS subsets of the same size, we conclude that this is due to the

sampling technique. Analysis of variance on the number of beta

residues gives very similar results, whereas analysis on the num-

ber of turn residues fails to show significant differences, suggest-

Figure 1. Secondary structure as a function of simulation time in the long trajectory starting from an

ideal a-helical (A) and from a random coil structure (B). Some examples of the conformations sampled

are shown as ribbons, with red dotted lines representing hydrogen bonds.

4 Monticelli et al. • Vol. 00, No. 00 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc



ing that this metric is not capable of discriminating among dif-

ferent sampling methods.

Figure 3 shows the secondary structure preference as a func-

tion of residue number in the FL simulations and in the four MS

sets. Convergence at the residue level was assessed within each

FL simulation by splitting them in 2 halves (corresponding to

0.6875 ls each), and within the MS set by comparing results of

each set (corresponding to 5.5 ls each). Significant differences

in the distributions are evident in FL sets, whereas distributions

are very similar in the MS simulations. In both FL and MS sets,

residues Ala4 to Lys7 appear to have the highest preference for

the helical conformation, b-turns are usually centered at residues

Ala5-Ala6 or Ala6-Lys7; residues 2–4 and 9–11 have highest

preference for the beta conformation.

The average radius of gyration (Rg) is 0.67 nm and 0.66 nm

in the FL and MS simulations, respectively, much lower than

the value for the completely elongated conformation (1.25 nm)

and slightly lower than the value for the ideal a-helix (0.70 nm).

Conformations with a radius of gyration larger than 0.8 nm are

less than 0.1% in both the FL and the MS simulations, with

slightly lower values for the MS ensemble (see Table 1), indicat-

ing that elongated conformations have very low population in

the unfolded ensemble, which is mostly composed of very com-

pact coil structures. Figure 4A shows that distributions of the ra-

dius of gyration in the six simulation sets are reasonably similar.

Only the MS simulation starting from the b-sheet structure

shows a significant difference compared to all others: a peak

around 0.61 nm is present in the distribution, corresponding to the

radius of gyration of the parallel b-sheet conformation used as a

starting structure. This suggests that the population of b-sheet-like
conformations is higher than in the other simulation sets.

The root-mean-squared deviation (RMSD) relative to the

ideal a-helix was calculated for each structure sampled. Figure

4B shows the distribution of RMSD in the six simulation sets.

Results for the MS simulation sets starting from a hairpin or a

b-sheet conformations show average RMSD relative to the ideal

a-helix higher than the other sets, and therefore appear to sam-

ple different conformations. In particular, these distributions

show peaks around 0.56 and 0.50 nm, respectively, correspond-

ing to the RMSD of the starting structures. The secondary struc-

ture was calculated for all the conformations accounting for the

peaks, and a high content in beta structures was found, confirm-

ing that a memory of the starting structures is present in the MS

sets having b-hairpin and b-sheet starting structures.

One-way ANOVA on both the radius of gyration and the

RMSD confirmed that the differences in the two FL sets are not

statistically meaningful, whereas differences among MS sets

with different starting structures are significant (p-value \
1026). Again, FL data sets are always statistically equivalent to

MS data sets, both when the starting structure is the same and

when it is different.

Assignment of states and kinetics of the equilibrium

Because the conformational equilibrium sampled in both the FL

and MS simulation sets includes a broad range of conformations,

potentially the best way to analyze the kinetics of the conforma-

tional equilibrium is to assign each of the structures sampled to

a specific conformational state (which corresponds to a related

ensemble of thermodynamic microstates), and then calculate the

probability of the transitions between all possible states. Assign-

ment of conformations to states was performed by clustering;

the numbers of residues in a-helical, 310-helical, p-helical, and
beta conformations were used as criterion for clustering. A total

of 220,016 structures were included in the clustering for the MS

simulation sets and 27,502 for the FL sets, representing 22 ls
and 2.75 ls of equilibrium sampling with 100-ps time resolu-

tion. The MS data set was clustered as described previously

using a modified Kmeans algorithm10 with 25 random starting

cluster centers and requiring consistent cluster assignments of all

data in the set for 10 consecutive iterations prior to convergence.

Because the clustering here is used to compare sampling meth-

ods rather than determining absolute character of states in the

data, artifacts of the clustering will be unimportant.

Eleven clusters were identified, and the mean secondary

structure content of the each one of them is shown in Table 2,

alongside the populations of the clusters in the MS and FL data

sets. Apparently, the agreement between FL and MS is only

qualitative: the maximum absolute difference in the population

of the states is �3%, while relative differences show much

larger values, up to 123%, corresponding to differences in free

Figure 2. Ensemble average of the population of helix (top panel),

beta (central panel), and turn (bottom panel) secondary structure as

a function of time in the four MS simulation sets. Secondary struc-

ture was calculated using the DSSP algorithm. [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]
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energy between the two sets as large as �5 kJ/mol. To evaluate

the agreement between the two sampling methods from a statis-

tical point of view, we split both the FL and the MS data sets

into subsets of the same size, and determined the probability of

the subsets being statistically equivalent using one-way

ANOVA. Analysis of variance shows that differences between

the two FL sets are not statistically significant, whereas differen-

ces between MS and FL sets are significant for clusters 1 and 3.

Differences among the four MS sets are also significant for the

same clusters (p-value \ 0.001 in both cases). To find the

source of the differences in the MS set, we performed ANOVA

excluding one MS subset and then two MS subsets from the

analysis. Results show that MS-ran and MS-hel sets are always

equivalent to each other and equivalent to FL-ran and FL-hel

sets, whereas the MS-hp and MS-sh sets always show statisti-

cally significant differences with all other sets.

Based on the clusters (states) listed in Table 2, the MS and

FL data sets were parsed for transitions and the relative rates

were calculated, based on 100 ps intervals. Figure 5 shows rep-

resentative structures for each of the 11 conformational states

found, as well as the transition rates between them. If we con-

sider the whole MS data set (which is 8 times larger than the FL

data set), the transition rates observed in the MS and FL simula-

tion sets are qualitatively similar only for transitions to and from

some of the most populated clusters (gray cells in Fig. 5); for

less populated clusters, FL sampling shows lower rates more

often than higher rates, indicating that the number of transitions

missed by FL but observed in MS sampling is greater.

Out of 121 possible transitions, 18 are not observed in both

sets, 28 are not observed in the FL set, and only 2 are not

observed in the MS set. Only 42 transitions show higher rates in

FL simulations, whereas the others show higher rates using the

MS sampling. The largest deviations between the two methods

are found for transition to and from clusters 8 to 11, which have

population lower than 1%. Focusing on the seven most popu-

lated clusters, large differences in the average transition times

are registered for the transition from cluster 6 (long a-helix)
to clusters 1 and 2 (b-bridged and random coil), from cluster 3

(b-hairpin) to cluster 5 (short p-helix), from clusters 1 and 2 to

cluster 6; in 4 out of 5 of these instances, the difference is due

to insufficient sampling in FL simulations, while only in the

case of the transition from cluster 6 to 1 (from long a-helix to

b-bridged) sampling appears to be better in the FL set. We at-

tribute this to the slow rate of transition here, relative to the

short MS simulation timescale, which highlights the complimen-

tary nature of FL-type simulations compared to MS simulations.

Figure 3. Population of helical, extended, and turn conformations as a function of residue number in the

FL simulations (A) and MS simulations (B). For the FL set, each simulation was split in 2 halves, and

the distributions for each half are compared; numbers in parentheses indicate the first half (1) and the

second half (2) of the simulations, respectively. Only the portions of trajectories after 225 ns were taken

into account. Each FL subset corresponds to 0.6875 ls, whereas each MS subset corresponds to 5.5 ls.
[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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These results also highlight the significance of using Markov

State Model approaches, especially in which adaptive sample

methods13 are employed.

Transition rates were also calculated for subsets of the MS

and FL data sets of the same size (16 MS and 2 FL subsets,

each one totaling 1.375 ls). Again, we compared the number of

Figure 4. (A) Normalized distribution of the radius of gyration in the six simulation sets. Only the

portions of trajectories after 225 ns were taken into account. (B) Normalized distribution of the root-

mean-squared deviation (RMSD) of the structures from the ideal a-helical conformation in the six

simulation sets. Only the portions of trajectories after 225 ns were taken into account. [Color figure

can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Table 2. Clustering of Conformational States in MS and FL Simulations.

# Cluster name hNai hN310i hNpi hNbi %MS %FL D% (relative) DG (kJ/mol)

1 Beta bridged 0.00 0.01 0.00 2.67 38.48 6 2.13 36.63 6 4.87 5.27 20.135

2 Random coil 0.00 0.00 0.00 0.00 36.37 6 2.11 39.31 6 4.36 27.47 10.195

3 Beta-hairpin 0.02 0.01 0.00 6.68 10.04 6 1.56 7.40 6 4.19 35.67 20.761

4 Short Alpha 4.92 0.00 0.00 0.09 8.36 6 1.20 7.97 6 2.83 4.59 20.116

5 Short Pi 0.00 0.03 5.75 0.00 2.27 6 0.52 2.56 6 2.16 213.71 10.321

6 Long Alpha 7.79 0.00 0.00 0.00 2.06 6 0.51 2.98 6 1.54 237.88 10.802

7 310 Nucleus 0.00 3.04 0.00 0.36 1.15 6 0.13 1.20 6 0.16 22.77 10.068

8 Long Pi 0.00 0.00 8.83 0.00 0.99 6 0.32 1.37 6 1.21 247.63 10.972

9 Alpha/Pi 4.30 0.00 5.21 0.00 0.23 6 0.09 0.49 6 0.36 2123.05 12.003

10 Alpha/310 4.84 3.00 0.00 0.03 0.06 6 0.02 0.06 6 0.04 28.42 10.201

11 Pi/Beta 0.00 0.00 5.03 2.32 0.04 6 0.02 0.01 6 0.01 86.72 25.041

hNai indicates the average number of a-helical residues in the cluster, hN310i the average number of 310-helical resi-

dues, hNpi the average number of p-helical residues, and hNbi the average number of beta residues. % MS and

% FL indicate the population of the cluster in the MS and FL simulations, respectively, given as averages 6 stand-

ard error (calculated by block averaging on blocks of the same size for FL and MS sets).
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transitions missed in each subset and the differences in the tran-

sition rates. We found that, on average, �12 transitions are

missed in MS subsets but observed in FL subsets, and �10 tran-

sitions are missed in FL subsets but observed in MS subsets. As

for transition rates, we calculated the relative deviation of each

rate from the average rate for the same transition (calculated for

each transition taking into account all MS and FL data sets), and

summed up all the relative deviations for each subset consid-

ered; this sum provides a quantitative measure of the deviation

of the rates from the average for each subset.

Results show that the relative deviations from the average

rate are comparable for MS and FL simulations. We then split

each rate matrix into 4 matrices, containing transition rates for

the conversions between clusters (a) 1–6 and 1–6, (b) 1–6 and

7–11, (c) 7–11 and 1–6, (d) 7–11 and 7– 11. Relative deviations

from the average rate were similar for FL and MS data sets

when we consider transitions involving the most populated clus-

ters, whereas much larger deviations were found in the FL set

when considering transitions among the least populated clusters

(cluster 7 to 11). We also divided the transitions in 3 groups

based on their rate: fast, intermediate, and slow transitions, and

checked the relative deviations of the rates in each group. Con-

sistently with the findings above, we found that larger deviations

are observed with MS sampling for slow transitions and with FL

sampling for fast transitions. These results show that, considering

data sets of the same size, the MS methodology provides more

reliable estimates of the transition rates between conformations

with lower populations and with faster transition rates, while FL

sampling has some advantage when transition rates are slow.

Free energy landscapes

The potential of mean force (PMF) was calculated for each sim-

ulation set as:

DGx ¼ �RT lnðNx=NtotÞ

where T is the simulation temperature, NX indicates the population

of the particular state X and Ntot the total population sampled.

Principal components, backbone dihedral angles, and secondary

structure were used to define the state in different PMF plots.

PMF surfaces can be considered as approximations to the equilib-

rium free energy landscapes projected onto these metrics.

The plot of the PMF as a function of the first two principal

components (Fig. 6) shows a relatively smooth energy land-

Figure 5. Microstate transition rate matrix for FL sampling (top numbers) versus MS sampling

(bottom numbers) in inverse nanoseconds. Background colors scale from black (FL sampling overesti-

mating the rate) to gray (similar rates) to white (transitions unobserved in FL sampling); rates are in

yellow when FL overestimates the rate (darker gray squares), in red when FL underestimates the rate

(lighter gray squares); the relative difference between FL and MS rates is used for the shading scale.

A representative structure for each cluster is shown, alongside the ranking of the cluster (based on

population). [Color figure can be viewed in the online issue, which is available at www.interscience.

wiley.com.]
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scape, with numerous minima separated by low energy barriers,

as has recently been observed for larger helix-coil systems10.

PMFs for both data sets were constructed using the same princi-

pal components, from a data set including all FL and MS simu-

lations. Both for the FL sets and for the MS sets, the lowest 25

minima are within 2 kT from the absolute minimum. Structures

found within 1 kJ/mol from each minimum were clustered using

the backbone RMSD as a similarity criterion, with a cutoff of

0.15 nm. Each minimum contains only one main cluster (with a

population of 75% or higher), and the central structure of the

most populated cluster was chosen as a representative structure.

Location of the lowest energy minima is shown in Figure 6, to-

gether with the central structure of the cluster. Both the location

and the structures found in the PMF plots for the FL and MS

sets are similar. Cluster centroids show well-defined secondary

structure: a parallel b-sheet and an a-helix are found in the two

lowest energy minima, whereas an anti-parallel b-hairpin struc-

ture is found in a more shallow but much broader minimum.

The barrier separating the b-hairpin conformation from all other

minima is the only one larger than 1.5 kT in both PMF plots.

The lowest energy minimum, represented by the parallel b-sheet
conformation, also shows a barrier around 1.5 kT. Because the

conversion between b-hairpin (or b-sheet) and other structures

takes place on a longer timescale compared to most other con-

formational transitions in the system, we conclude that the PMF

as a function of the first two principal components highlights a

correlation between free energy landscape and kinetics.

The plot of the PMF as a function of u and w backbone di-

hedral angles is shown in Figure 7. The most populated regions

in the u/w space are virtually identical for the FL and MS simu-

lations. The presence of a relative minimum around u 5 160

and w 5 260 highlights the presence of tight turns (c-turns),
which are not evidenced by DSSP analysis. The difference plot

(Fig. 7C) shows that differences between the FL and MS sets

are mainly localized in the less populated regions (high free

energy in Figs. 7A and 7B). A PMF was also calculated as a

function of the number of helical and beta residues; results (not

shown) confirm that the absolute minimum in both FL and MS

simulation sets corresponds to the absence of secondary structure

elements, and relative minima are found for conformations with

both beta and helical residues.

Comparison between simulations and experiments

Because most of the experimental data available on the RN24

peptide were collected in conditions different from those of the

simulations (low temperature, low pH, and high ionic strength),

we do not know if the simulation parameters (force field and

methodology) would provide a reasonable match with experi-

mental values. Moreover, the lack of a well-defined helical sec-

ondary structure found in our simulations suggests that the force

field employed here may not be predictive of experimental

results. Therefore, a comparison between simulations and experi-

mental results should be considered meaningful only at a quali-

tative level. However, even if the results are not predictive of

experiment, one can still ask how these different methods pre-

dict the behavior of this complex dynamical system—as we

compare simulation methods with each other, at some level, the

Figure 6. Potential of mean force for the FL and MS simulations as a function of the first two princi-

pal components. Only the portions of trajectories after 225 ns were taken into account. Contour lines

are drawn with 0.5 kT spacing. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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agreement with experiment is not necessary to allow a compari-

son of computational methods. Finally, we see fairly complex

dynamics for a peptide, including both helical and hairpin struc-

tures, which yields a natural challenge for any computational

method to describe.

A helical content of about 50% was measured by circular

dichroism at 38C and pH 5 for the RN24 peptide24 and it was

shown that this helical content decreases sharply as temperature

increases.36 Related peptides, like the C-peptide and the S-pep-

tide, also show a significant helical content at low temperature,

but the helix is not observed above 308C.37 NMR experiments

were also carried out on the RN24 peptide at the temperature of

275 K, at low pH and high ionic strength,25 and showed nonheli-

cal long-range NOE peaks, suggesting multiple conformations in

aqueous solution that include both helical and bent structures. As

shown in Table 1, the helical content in both the FL and the MS

simulations reaches �10%, which is compatible with the experi-

ments at higher temperature. Besides the difference in tempera-

ture, other factors might contribute to the low helical content in

our simulations, such as the difference in pH and ionic strength,

inadequacies inherent to the force field employed, and inadequate

simulation methodology. Force field inadequacies probably play a

role in determining the high population of p-helical conforma-

tions observed, which accounts for �1/3 of the total helical con-

tent in all simulations. The high content of p-helix was previously

shown by Brooks et al. to be a force field artifact,38 probably due

to poor parameterization of backbone dihedral angles.

Average distances calculated from the trajectories are com-

pared with published NOE-derived inter-proton distances. All

(i, i12) and longer-range connectivities reported by Osterhout

et al.25 were compared to distances calculated from the simula-

tions, for a total of 20 inter-proton distances. Table 3 shows the

violations for each of these distances. Because of the lower heli-

cal content and to higher flexibility of the peptide at higher tem-

perature, one could expect large discrepancies between calcu-

lated and measured distances. In fact, differences are not very

large, due to the highly non-linear weighing of distances in the

NOE experiment. Despite the relatively low sensitivity of the

NOE experiment to minor changes in a conformational equilib-

rium, the comparison between calculated and measured distances

shows differences between the simulation sets. Even though 3

and 5 violations are observed in simulation FL-ran and FL-hel

respectively, no distance is violated for more than 0.05 nm. In

the case of the MS simulations, no violations larger than 0.05

nm are found in the sets starting from a helical and a random

coil conformation, whereas 3 and 2 violations are found when

the starting structure was a b-hairpin and a b-sheet, respectively.
NOE violations in 2 MS sets are due to the persistence of

hairpin-like or b-sheet-like structures, as evidenced by secondary

structure analysis. Averaging over all four MS simulation sets

gives no violations larger than 0.05 nm, in agreement with NMR

data; this is consistent with the highly non-linear weighing of

distances in NOE experiments.

Discussion

Several theoretical studies have been carried out on RN24 and

similar peptides.39–42 In the present work, we investigate the re-

Figure 7. Potential of mean force as a function of the backbone u
and w dihedral angles for (A) the FL simulations, (B) the MS simu-

lation, and (C) difference between the two. Only the portions of tra-

jectories after 225 ns were taken into account. Contour lines are

drawn with 1 kT spacing in all plots.
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versible folding of the RN24 peptide using molecular dynamics

simulations, and we focus on the comparison between few long

trajectories and thousands of shorter ones obtained using the MS

approach. The MS technique has been recently used to describe

the folding of peptides and small proteins in atomistic detail; it

allows for a sampling 3–4 orders of magnitude longer than tradi-

tional calculations, and therefore allows for a direct comparison

between simulated and experimentally determined bulk protein

folding dynamics.3 More recent work involving distributed com-

puting has involved the construction of Markov State Mod-

els,9,13,14 which allow for a more sophisticated use of a MS data

set, but in this article, we examine the most simple style of MS

analysis. In the present work, when referring to the MS sampling

methodology, we mean: performing a large number of independ-

ent simulations, each one longer than the lag phases of the fold-

ing process (equilibration time), and using only the portion of

the trajectories beyond the equilibration time for the calculation

of the properties of the system.

Discrepancies between values of different structural metrics

on the FL sets are always larger than those among MS sets. At

the same time, uncertainties on the structural metrics (calculated

by block averaging on each MS and FL set separately) are

always significantly larger for the FL sets, and sometimes they

are comparable to the average value of the metric. As a conse-

quence, differences between the two FL simulations are not stat-

istically significant whereas differences among MS simulations

are statistically significant in some cases. The FL sets are found

to be always equivalent to the MS-ran and MS-hel sets, which

have the same starting structures, and also to the combined MS

data sets, but not to the combined MS-hp and MS-sh sets. The

latter sets show the largest discrepancies with all the others, due

to the presence of a slight ‘‘memory’’ of b-hairpin and b-sheet
starting structures, as highlighted by the analysis of RMSD and

radius of gyration.

As for the kinetics of the equilibrium, the rates of intercon-

version between different species calculated from each of the

four MS complete simulation sets are substantially equivalent,

while the FL results show large variations. Also, the number of

transitions that are unobserved in the FL simulations is much

higher than the number of transitions missed in the MS simula-

tions. If we break the MS sets into smaller parts of the same

size as the FL sets, the deviations from the average transition

rates are comparable for the MS and FL subsets when we con-

sider transitions between highly populated clusters, whereas they

are much larger in the FL subsets when we consider transitions

between clusters with lower population. The FL approach is stat-

istically less precise in the prediction of fast transition rates, but

captures a few very slow transitions that are missed by the MS

approach. A closer look at the average transition times reveals

that transitions involving long b-hairpins and long a-helices are

slower, whereas transitions involving short a- helices, 310-heli-

ces, and random coils are faster. Conversions of random coils to

short helices (both a and 310) and b-bridged structures take

place, on average, in 7–8 ns and 0.5 ns, respectively. The slow-

Table 3. Calculation of NOE-Derived Distances in the FL Simulations Separately (FL-hel, FL- ran) and

Together (FL-avg), and in Each Set of MS Simulations Separately (MS-hel, MS-ran, MS- hp and MS-sh)

and Together (MS-avg).

# Atom1-Atom2 FL-hel FL-ran FL-avg MS-hel MS-ran MS-hp MS-sh MS-avg

1 E2(Ha) - A5(HN) 0.031 0.013 0.022 0.018 0.050 0.054 0.078 0.048

2 E2(Ha) - A5(Hb*) 20.056 20.057 20.056 20.054 20.014 20.018 0.018 20.021

3 T3(Ha) - A6(Hb*) 20.065 20.101 20.086 20.090 20.093 20.071 20.057 20.079

4 A4(Ha) - K7(HN) 0.000 20.030 20.017 20.023 20.041 20.014 20.009 20.023

5 A4(Ha) - K7(Hb*) 20.081 20.115 20.101 20.100 20.131 20.090 20.088 20.106

6 A5(Ha) - K7(HN) 20.023 20.031 20.027 20.052 20.032 20.035 20.025 20.036

7 A5(Ha) - F8(HN) 20.016 20.017 20.016 20.017 20.033 20.011 0.005 20.016

8 A5(Ha) - F8(Hb*) 20.080 20.083 20.081 20.074 20.097 20.058 20.062 20.075

9 K7(Ha) - L9(HN) 0.005 20.009 20.002 20.007 20.009 0.000 0.006 20.002

10 K7(Ha) - R10(HN) 0.044 0.004 0.021 0.038 0.012 0.050 0.062 0.038

11 K7(Ha) - R10(Hb*) 20.022 20.046 20.035 20.019 20.035 20.001 0.016 20.013

12 F8(Ha) - R10(HN) 20.032 20.015 20.024 20.026 20.026 20.020 20.048 20.031

13 F8(Ha) - A11(HN) 0.034 0.032 0.033 0.047 0.033 0.065 0.039 0.044

14 F8(Ha) - A11(Hb*) 20.018 20.020 20.019 20.008 20.020 0.016 0.008 20.003

15 L9(Ha) - H12(Hb*) 0.021 20.012 0.05 20.007 20.014 0.011 0.025 0.002

16 T3(HN) - A6(Hb*) 20.028 20.068 20.051 20.108 20.118 20.091 20.088 20.103

17 T3(HB) - A5(HN) 20.110 20.096 20.104 20.119 20.134 20.120 20.118 20.123

18 T3(Hb) - A6(HN) 20.035 20.032 20.034 20.057 20.071 20.051 20.056 20.060

19 E2(Hc*) - K7(HN) 20.012 20.106 20.075 20.115 20.091 20.080 20.076 20.092

20 T3(HN) - A6(HN) 20.015 0.000 20.008 20.024 20.038 20.023 20.018 20.026

Number of violations 5 3 4 3 3 6 9 4

Number of violations[0.05 nm 0 0 0 0 0 3 2 0

Average violation (nm) 0.006 0.002 0.007 0.005 0.005 0.010 0.013 0.006

In all cases, only the portions of the trajectories beyond 225 ns were taken into account (corresponding to 1.375 ls
for each FL simulation and 5.5 ls for each MS simulation).
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est transitions are found between long helices and long hairpins.

This is consistent with the observation that the most likely

mechanism of conversion between those structures involves con-

formations with very little or no secondary structure.43 These

features of the complex equilibrium studied highlight the com-

plementarity of the FL and MS approaches, although it is worth

noting that worse statistics is a major shortcoming of the FL

approach (indeed, the FL approach misses 28 transition seen in

the MS approach, while the MS approach only misses 2 seen in

FL).

The differences in the results obtained with the two

approaches are related both to the difference in the size of the

data sets and to the sampling methodology. Our analysis of the

kinetics clearly illustrates this point. When we consider the com-

plete FL and MS data sets, we observe that MS sampling misses

only 2 transitions whereas FL simulations miss 28 transitions.

This large difference is mainly due to the size of the data sets:

indeed, when we consider data sets of the same size, the number

of missed transitions is similar. At the same time, when consid-

ering data sets of the same size, the MS approach gives more re-

producible transition rates for fast transitions while the FL

approach is more reliable for slow transitions. The MS approach

also gives much lower uncertainties on most structural metrics

analyzed. These differences are therefore due to the different

sampling methodology.

On the basis our results, we find some limitations for both the

MS and the FL approach. First, the timescale of each individual

simulation should be longer than the lag phases of the folding pro-

cess.22 This observation is relevant for both the MS and the FL

methodology. Paci et al. also highlighted the importance of suffi-

ciently long individual trajectories in order to obtain reliable esti-

mates of the folding time.18 In the present work, we confirm that

the length of each individual trajectory is crucial in the determina-

tion of thermodynamic properties of the system using the MS

approach (if one does not use more sophisticated methods, such

as Markov State Models). We also observe that, in the FL

approach, the simulation length should be multiple times longer

than the lag phases of the folding process in order to provide rea-

sonable average properties for the system. Unfortunately, the min-

imum length required for the convergence of the simulations is

not known a priori. In studies by Sorin et al. on the helix-coil

transition in alanine-based peptides, a simulation time of �50 ns

was shown to be sufficient for complete convergence to ensemble

equilibrium, allowing prediction of the thermodynamic properties

of the peptides in several AMBER force fields under a variety of

conditions with high precision.10,44

As complete ensemble convergence was not reached in our

trajectories, we can conclude that the time required would be

longer than 250 ns. This large difference in equilibration time in

comparison to the polyalanine-based peptides studied by Sorin

et al. may be due to several factors, including the force field, the

simulation methodology, and the peptide sequence. Unlike the

studies on polyalanine-based peptides, the RN24 peptide samples

b-hairpin and b-sheet structures, which interconvert with helices

on longer timescales than other transitions, consistent with lon-

ger folding times observed experimentally for b-hairpin and b-
sheet structures.6,7 Still, as the two systems were studied using

different force fields and methodologies, it is non-trivial to

assess the relative contributions of each of these factors to the

difference in equilibration times.

One important limitation of the FL sampling approach is the

high uncertainty on most structural metrics and on the prediction

of numerous transition rates. Although the predictions obtained

with the FL method are qualitatively in agreement with those

obtained using the MS approach, the uncertainties obtained with

the block averaging procedure are sometimes comparable to the

average values; this is the case, for example, for the average

number of residues with a helical secondary structure.

The main limitation of the MS approach appears to be the

computational power required to observe near-convergence.

Considering that each MS simulation set in the present work

consists of 800 trajectories, an individual simulation length of

50 ns corresponds to a total simulation time of 160 ls. If we

discard the initial 25 ns and calculate the average secondary

structure over the next 25 ns, we get probabilities ranging

between 1% and 32% for helical conformations (with higher

population for simulations starting from the helical structure),

and between 4% and 39% for beta structures (with higher popu-

lation for the simulations starting from beta structures); the dis-

crepancies are very large, despite the total sampling time of 160

ls. On the contrary, the two FL simulations, totaling 3.2 ls,
give probabilities reasonably close to near-equilibrium values for

most structural metrics, although the uncertainties in this case

are large. However, adaptive sampling methods13 suggest that

MS methods can be done in a way that is more efficient than FL

methods, within an MSM framework.

In our work, the FL approach required much less data storage

and peptide conformations could be stored with higher temporal

resolution, allowing for a detailed analysis of molecular motions

on very short time scales. Indeed, long trajectories have been

used to describe the mechanisms of conformational changes of

the RN24 peptide, including the nucleation and propagation of

helical structures.43 In particular, a detailed analysis of the

hydrogen bonding dynamics could only be performed consider-

ing structures stored with a temporal resolution of 1 ps. We

point out here that data storage requirements are not related to

the different techniques but only to the amount of sampling.

Simulations run with the FL approach reaching the same amount

of sampling as the MS data set would have exactly the same

storage requirements. This leads us to a final consideration about

the sampling methodologies. Because of the difficulties in the

parallelization of MD algorithms, it is practically very difficult

to obtain with few long simulations the same amount of sam-

pling obtained here with many shorter simulations, using the

same computational power and the same kind of hardware (PC),

in a reasonable amount of time. In our case, each FL simulation

required �10 months, using one dual processor PC, while �2

months were sufficient to collect 800 ls with the MS approach,

using hundreds of PCs at the same time.

Conclusions

Molecular dynamics simulations were carried out on the RN24

peptide using few long microsecond timescale trajectories and

many shorter independent simulations. Both data sets compare
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favorably with NMR experiments and circular dichroism. Near-

convergence of structural metrics was achieved with the MS

approach when each individual simulation was longer than 225

ns, although a ‘‘memory’’ of the starting structure was observed at

shorter timescales in systems starting from b-hairpin and b-sheet
conformations. Secondary structure, radius of gyration, and free

energy landscapes features indicate a qualitative agreement

between FL and the MS approach. Uncertainties in all structural

metrics are consistently larger in the FL sets than in MS subsets,

even when subsets of the same size are considered. Large uncer-

tainties are therefore related to the sampling methodology.

Because of the large uncertainties in the FL data set, differences

in structural metrics between the MS and the FL approach are not

statistically significant according to the analysis of variance.

Instead, significant differences are observed between the MS sim-

ulation sets starting from random or helical structures and those

starting from b-hairpin or b-sheet structures, due to the presence

of a slight memory of the starting structure in the latter sets. We

hypothesize that the long equilibration times observed for RN24

derive from the complexity of the equilibrium, which involves

numerous species with greatly varying secondary structural con-

tent. In particular, we notice that transitions between beta struc-

tures and all other conformations are the slowest. Beta structures

are separated from other conformations by a higher energy barrier

in the free energy landscape of the RN24 peptide, which high-

lights a correlation between free energy landscape and kinetics.

Analysis of the kinetics of the complex conformational equilib-

rium shows that the MS method provides more precise transition

rates for fast transitions and for those transitions involving less

populated conformational states. FL shows some advantage in the

detection of very slow transitions. This difference appears to be

related to the sampling methodology, not to the size of the data sets.

The differences in the predictions obtained with the two sampling

methodologies highlight the complementarity of the FL and MS

approach for the study of conformational equilibria of peptides.
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