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Abstract: Atomistic simulations of protein folding have the potential to be a great complement to
experimental studies, but have been severely limited by the time scales accessible with current
computer hardware and algorithms. By employing a worldwide distributed computing network of
tens of thousands of PCs and algorithms designed to efficiently utilize this new many-processor,
highly heterogeneous, loosely coupled distributed computing paradigm, we have been able to
simulate hundreds of microseconds of atomistic molecular dynamics. This has allowed us to directly
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simulate the folding mechanism and to accurately predict the folding rate of several fast-folding
proteins and polymers, including a nonbiological helix, polypeptide �-helices, a �-hairpin, and a
three-helix bundle protein from the villin headpiece. Our results demonstrate that one can reach the
time scales needed to simulate fast folding using distributed computing, and that potential sets used
to describe interatomic interactions are sufficiently accurate to reach the folded state with exper-
imentally validated rates, at least for small proteins. © 2002 Wiley Periodicals, Inc. Biopolymers
68: 91–109, 2003
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INTRODUCTION

Understanding the sequence–structure relationship of
proteins will play a pivotal role in the postgenomic
era, and will have great impact on genetics, biochem-
istry, and pharmaceutical chemistry.1–3 A detailed
picture of the folding process itself will be important
in understanding diseases, such as Alzheimer’s and
variant Creutzfeldt–Jacob disease, believed to be re-
lated to protein misfolding.4 Finally, an understanding
of protein folding mechanisms will be important in
protein design and nanotechnology, in which self-
assembling nanomachines may be designed using
synthetic polymers with protein-like folding proper-
ties.5

Unfortunately, current computational techniques to
tackle protein folding simulations are fundamentally
limited by the long time scales (from a simulation
point of view) needed to study the dynamics of inter-
est. For example, while the fastest proteins fold on the
order of tens of microseconds, current single com-
puter processors can only simulate on the order of a
nanosecond of real-time folding in full atomic detail
per CPU day—a 10,000-fold-computational gap.
Great strides in traditional parallel molecular dynam-
ics (MD), utilizing many processors to speed a single
dynamics simulation, have been made and have par-
tially overcome this divide. A tour-de-force parallel-
ization of simulation code for supercomputers by Duan
and Kollman has previously led to the simulation
of 1 �s of dynamics for the villin headpiece three-
helix bundle,6 demonstrating that parallelization
schemes using hundreds of processors can be used to
make significant progress at closing this computa-
tional gap. However, such methods have fundamental
drawbacks: in particular, these methods require com-
plex, expensive supercomputers due to the need for
fast communication between processors. Moreover,
due to the stochastic nature of folding, in order to
study the folding of a 10-�s folder, one must simulate
hundreds of microseconds, requiring computing
power equal to thousands or tens of thousands of
today’s processors.

Developing such large-scale parallelization meth-
ods is very difficult, and current parallelization
schemes cannot scale to the level of even thousands of
processors (i.e., cannot use so many processors effi-
ciently). To understand why scalability to thousands
of processors is so difficult, consider an analogy to a
graduate student thesis. A typical thesis takes 1500
graduate student days. If one employed 1500 graduate
students to accomplish this goal, would it be possible
to complete a thesis in a single day? Clearly not—the
overhead of communication between students, as well
as the inability to devise an “algorithm” to divide the
labor evenly, would make 100% efficiency impossible
in this case. At this level of scaling, it is likely that the
work would actually take longer. These issues, in
particular balancing communication time against time
spent actually doing work, are mirrored in the division
of labor between computer processors. Clearly, the
only way to efficiently utilize such a large number of
processors is to divide work in such a way that re-
quires minimal communication.

Even with an algorithm with perfect scalability
(e.g., with a 10,000-fold increase in speed using
10,000 processors), we are still left with the problem
of obtaining a 10,000-processor supercomputer. For
comparison, the largest unclassified supercomputer in
the world (the SP at NERSC) has 2500 processors,
and of course this resource must be shared between
many (hundreds) different research groups. Recently,
another approach has been developed to bridge this
enormous computational gap: worldwide distributed
computing.7 There are hundreds of millions of idle
PCs potentially available for use at any given time,
the majority of which are vastly underused. These
computers could be used to form the most powerful
supercomputer on the planet by several orders of
magnitude.7 However, to tap into this resource effi-
ciently and productively, we must employ nontradi-
tional parallelization techniques.8,9 Indeed, we wish to
accomplish a seemingly impossible goal: to push the
scalability of MD simulations to previously unattain-
able levels (i.e., the efficient use of tens of thousands
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of processors) using an extremely heterogeneous net-
work of processors that are loosely coupled by rela-
tively low-tech networking (primarily modems).

In this review, we first present the details of our
method to simulate protein folding using distributed
computing, and then summarize our folding simula-
tion results for several small, fast folding proteins and
polymers. Specifically, we demonstrate the applica-
bility of our method by simulating the folding of
protein helices10,11 in atomic detail. Next, as an addi-
tional quantitative test of our methodology, we exam-
ine the folding rate and folding time distribution of a
nonbiological helix,12 for which results of traditional
MD simulations13 and experiments14 are known. We
finally apply these methods to larger and more com-
plex proteins, including a �-hairpin15,16 and a three-
helix bundle.6 We conclude with an assessment of the
validity of our methods including a quantitative com-
parison of these results with experimental measure-
ments of folding rates and equilibrium constants, and
a discussion of what we have learned about folding
mechanisms.

METHODS

Why Is the Dynamics of Complex
Systems so Slow and How Can This Be
Circumvented?

The dynamics of complex systems typically involves the cross-
ing of free energy barriers.17 It has been demonstrated18,19

that free energy barrier crossing dynamics, such as protein
folding, does not make steady, gradual progress from one
state to another (such as dynamics from the unfolded to
folded states during a folding transition), but rather spends
most of the trajectory time dwelling in a free energy mini-
mum, “waiting” for thermal fluctuations to push the system
over a free energy barrier. Indeed, this process is dominated
by the waiting time, and the time to cross the free energy
barrier is in fact much shorter than the overall folding time,
typically by several orders of magnitude.20 This opens the
door to the possibility that one may simulate complex
processes, such as folding, using trajectories much shorter
than the folding time20 (i.e., using nanosecond simulations
to reproduce kinetics with microsecond rate constants).

Methods to exploit this observation have been previ-
ously developed (the most notable being path sampling, in
which one simulates the paths over the barrier, rather than
the time spent waiting in the original free energy minimum),
with promising results.20–22 However, several technical
complications have limited the use of these methods in
simulating protein folding and in making quantitative com-
parisons to experiment. First, some of these methods require
that the path in question not dwell in metastable states and
thus may get stuck in local meta-stable free energy minima

along the pathway (which have been found in many folding
and unfolding simulations19). Second, these methods re-
quire knowledge of the native state as an end goal and in a
sense apply a field to the trajectories to reach this native
state. Finally, in the end, the heart of the protein folding
problem lies in sampling, and even with the great benefits of
path sampling methodology, a tremendous degree of sam-
pling (in this case, in path space) must still be performed.

Thus, the main goal of the method we have developed is
to simulate folding dynamics starting purely from the pro-
tein sequence and an atomistic force field, without using any
knowledge of the native state in the folding simulation. It is
important that our method can successfully tackle the issue
of lingering in metastable free energy minima. To achieve
this, we use the following algorithm (“ensemble dynam-
ics”). Consider running M independent simulations started
from a given initial condition (each run starts from the same
coordinates, but with different velocities). We next wait for
the first simulation to cross the free energy barrier (see
Figure 1). Since the average time for the first of M simula-
tions to cross a single barrier is M times less than the
average time for all the simulations (assuming an exponen-
tial distribution of barrier crossing times8,9; see below for
details), we can use M processors to effectively achieve an
M times speedup of a dynamical simulation, thus avoiding
the waiting in free energy minima. In a sense, we distribute
the waiting to each processor in parallel, rather than in
series, as in traditional parallel MD. Given the ability to
identify individual barrier crossings, one can then speed the
entire (multiple barrier) problem by turning it into a series
of single barrier problems, restarting the processors from the
new free energy minima after each barrier crossing (see
below and Refs. 8 and 9). Also, it can be shown that one
need not use identical computers for these calculations, an
important fact in employing heterogeneous public clus-
ters.8,9

To more quantitatively see how one can use these
simulations to examine events that occur on considerably
longer time scales, consider a protein with single expo-
nential kinetics, where the fraction that fold in time t is
given by

f�t� � 1 � exp(�k t)

where k is the folding rate. On average, a folding event will
occur on the 1/k time scale. However, we expect to see some
folding events even at short times compared to the folding
rate, i.e., when kt is small. In this case, we have f(t) � kt.
How many folding events would we expect to see? Consider
studying a protein that folds with k � 1/10,000 ns, given M
� 10,000 simulations each of length t � 30 ns we would
expect to see M f(t) � M k t � 30 folding events.

The above discussion shows how one can speed dynam-
ics by a factor of M for a single barrier system, but what
about multiple barrier problems? To handle multiple barri-
ers, we suggest a scheme similar to Voter’s parallel replica
method.9 This method is summarized in Figure 1. We start
M simulations from a single initial condition, and then wait
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for the first simulation to cross a free energy barrier. Once
this simulation has crossed over to the next free energy
minimum, we restart all other simulations from that new
location in configuration space, restart the dynamics, and
wait for another replica to cross another free energy barrier.
Since we employ stochastic dynamics, even though all
simulations are restarted from the same configuration, they
quickly decorrelate from each other and explore different
regions of the phase space.

Quantitative Rate Prediction

Below, we show how this scheme can be used to predict
folding rates. This result stems from the fact that the distri-
bution of barrier crossing times for the first-to-cross is
directly linked to the distribution of usual barrier crossing
times. To demonstrate this, we again assume single expo-
nential kinetics (deviations from single exponential kinetics
have also been examined elsewhere8). For a single proces-
sor, we expect that a particular simulation would have
crossed the barrier by time t with a probability

P1�t� � k exp(�k t)

For the M simulation case, the probability that the first
simulation has crossed in time t is

PM(t) � � k exp(�k t�] M �1 � k �
0

t

exp(�k t�dt]M�1

(i.e., the probability that one simulation has crossed, times a
degeneracy factor of M, times the probability that the re-
maining M � 1 simulations have not folded). Evaluation of
the integral above yields

PM�t� � M k exp[�M k t]

which is exactly the same distribution as the single proces-
sor case, except with an effective rate which is M times
faster. Since this method simply speeds the effective rate of
crossing each barrier, one can use the number of processors
M and the rate for first crossing to predict the experimental
rate.

The error inherent in the above procedure for calculating
the rate and the time constant can be estimated in the
following way. As shown above, for a given Ntotal and a
given t, the rate k is simply proportional to the number of
molecules that have folded by time t, Nfolded(t). Since each
folding process behaves probabilistically (according to an
exponential distribution) and given fixed t and Ntotal, the
number of processes that will fold by time t, Nfolded(t), will
be a random variable. In other words, different realizations
of the “large experiment” containing Ntotal individual pro-
cesses will, by their very nature, yield different values of
Nfolded(t) for a fixed time t. From this it follows that our rate
estimate will also be associated with a certain inherent
uncertainity. From elementary probability theory, we know
that the number of folding events by time t, Nfolded(t), given
a constant rate, will be distributed according to the Poisson
distribution. This in turn means that the rate estimate, which
is proportional to Nfolded(t), will also be distributed accord-
ing to the Poisson distribution. The standard deviation of a
Poisson distribution with rate � is equal to �1/2, meaning
that our rate estimate � standard deviation will simply be

k � Nfolded/�Ntotalt� � Nfolded
1/2/(Ntotalt)

FIGURE 1 Simulating dynamical events using worldwide
distributed computing. Traditional methods utilize multiple
processors to speed a single dynamics calculation. We sug-
gest that multiple processors can be used to generate sets of
calculations, and that the desired thermodynamic or kinetic
observables can be calculated from such an ensemble. This
method does not require supercomputers and can run well
on massively parallel clusters.7–9 Consider a multiple bar-
rier-crossing problem (a model of many complex phenom-
ena). Since the bulk of simulation time is spent waiting for
thermal fluctuations to bring the system over the barriers,
one can speed the calculation by starting many simulations
in the first free energy minimum (a), and waiting until just
one of them has crossed. At this point, we couple the
simulations by placing them all in the same place in the
configuration space as the simulation that has crossed that
barrier (b). This process is then repeated as many times as
needed to cross additional free energy barriers (c). One can
show (see text) that this algorithm, with M processors, is
equivalent to a single processor system running M times
faster.8,9 Thus, with hundreds to thousands of processors
and assuming that one can identify transitions, we would be
able to bridge the computational barriers currently limiting
protein folding and reach well into the microsecond
time-scale.
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Standard propagation of error results in time constant
� standard deviation of

� � 1/k � �Ntotalt�/Nfolded � �Ntotalt�/Nfolded
3/2

For example, for the �-hairpin folding data (see below), we
have Ntotal � 2700, Nfolded � 8, and t � 14 ns, which results
in k � 2.1 � 105 � 0.74 � 104 s�1, and � � 4.7 � 1.7 �s.

We stress that as long as one can identify transitions,
thus allowing an M times speed-up for all barrier crossings,
the dynamics we simulate will faithfully follow the dynam-
ics one would obtain from traditional MD, but simply M
times faster. If there are off-pathway traps, our method will
go to them; indeed, we will reach them M times faster.
However, we will escape these traps M times faster as well.
This method is not intended as a structure prediction algo-
rithm, but rather a means to speed dynamics and study the
mechanism of folding, which may include on-pathway in-
termediates or diversions to traps.

How Can One Identify Free Energy
Barrier Crossings (“Transitions”)?

Of course, the utility of this method rests on our ability to
identify transitions, i.e., to calculate whether a simulation
has crossed a free energy barrier. Voter’s parallel replica
method was intended to accelerate the dynamics of solid-
state systems that have energy barriers, in which one can
identify new states by performing energy minimization to
see whether one has crossed an energy barrier.9 However, in
protein folding (as well as many other complex systems),
the relevant barriers are free energy barriers, and thus an
energy minimization technique is not applicable. In order
for this method to be applied to a broad range of barrier
crossing problems, one needs to use a more general way to
identify free energy barrier crossings.

We suggest that, in analogy to first-order phase transi-
tions, one could look for a large variance in energy, which
can loosely be related to a momentary surge in the heat
capacity (a common sign of a first-order phase transition).
Such energy variance peaks have been seen to coincide with
free energy barrier crossings in simple models23 and all-
atom (S. Perkins and V. Pande, unpublished results) models
of protein folding. This technique has the significant advan-
tage that it does not require any knowledge of the structure
of the protein at the barrier.24 Moreover, to the extent that
energy variance peaks correctly identify transitions, these
peaks would aid in the interpretation of the simulation
results, since they would demarcate transitions to new free
energy minima.

Of course, in the case of single-exponential kinetics, as
is experimentally observed for almost all small proteins,
there exists only one rate-determining free energy barrier,
and thus recognizing the barrier is not essential to the
technique. In fact, although we do not discuss it in this
paper, in some cases ignoring the transitions can result in
reaching the folded state faster than by recognizing all the
barriers.8 Finally, simulating completely independent trajec-

tories is another appealing possibility for systems with
single exponential kinetics; we discuss this possibility in the
Discussion section below.

Simulation Details

For all of the molecules presented here, each simulation is
started from a completely extended state. This is done to
avoid any possibility of biasing the initial state toward the
native state of the molecule. Clearly the extended state does
not represent the structure of the unfolded state. Indeed, we
find that rapidly—i.e., within 1–3 ns of MD simulation—
this extended state relaxes to the unfolded state of the
protein. While this practice utilizes more computational
time than, for example, starting from some predicted un-
folded state, it has the virtue of not making any assumptions
of the unfolded ensemble and removes any possibility of
biasing the system to the native state.

For each run, we have used M “clone” processors, each
simulating folding in atomic detail with molecular or sto-
chastic dynamics simulations (Figure 1). Once one of these
clones makes a transition (identified by a spike in the energy
variance: see below), we declare that the simulation has
gone through a transition, copy the resulting configuration
to all of the other processors, and recommence simulations
from the new configuration. After restarting all simulations
from the coordinates of the barrier-crossing simulation, one
must ensure decorrelation of the next ensemble of trajecto-
ries in order to achieve an increase in computational speed.
This process is performed many times, over several “runs.”

In our simulations, the spatial coordinates of the barrier-
crossing simulation were copied and unique random number
seeds (for Langevin dynamics random forces) were used to
immediately differentiate the simulations. In a purely deter-
ministic simulation, one would need to differentiate each
simulation by restarting them with differing velocities,
which may lead to potentially nonphysical discontinuities in
the path; however, if the velocity decorrelation time is much
shorter than the conformational decorrelation time (certainly
true for dynamics in any water-like solvent), then the effects
are likely to be minimal. In either case, the path obtained
would correspond to a fast traversal of the potential land-
scape, but the total simulation time among all processors
would be equivalent to the additional time waiting in min-
ima that a representative “serial” simulation would take.

The Folding@Home distributed computing system
(http://folding.stanford.edu) was used for the two most de-
manding calculations (the �-hairpin and villin simulations)
presented here. The Folding@Home client software (which
performs the scientific calculations) is based upon the
Tinker molecular dynamics code,25 with numerous modifi-
cations performed by Michael Shirts, other members of the
Pande group, Jed Pitera, and Bill Swope. We simulated
folding and unfolding at 300 K and at pH 	 7 (unless noted
otherwise), using the OPLS26 parameter set and the GB/
SA27 implicit solvent model. Stochastic dynamics were
used to simulate the viscous drag of water (	 � 91/ps), and
a 2 fs integration time step was used with the RATTLE
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algorithm28 to maintain bond lengths. Long-range interac-
tions were truncated using 16 Å cutoffs and 12 Å tapers.

We identified transitions by a heat capacity spike asso-
ciated with crossing a free energy barrier. It has been
previously shown that this is a means to identify transitions
in all-atom8 and simplified protein model29 simulations. To
monitor the heat capacity during the simulation, we calcu-
late the energy variance, and use the thermodynamic rela-
tionship Cv � (E2 � E2)/T, where E is the energy of the
system; note that since we are using an implicit solvent, our
“energy” is often called an “internal free energy” (the total
free energy except for protein conformational entropy).
Each PC runs a 100 ps MD simulation (“1 generation”),
calculates the energy variance within this time period, and
then returns this data to the Folding@Home server. If the
energy variance exceeds a preset threshold value, the server
identifies this trajectory as having gone through a transition,
and then resets all other processors to the newly reported
coordinates. Since the heat capacity is extensive, we used a
fixed value of this threshold per atom (0.8 kcal2/mol2/atom)
for all molecules (which for example leads to a threshold of
	300 kcal2/mol2 for villin).

Since transitions occur relatively infrequently (see be-
low), one need not run these simulations on massively
parallel supercomputers (with high speed communication);
instead, these simulations are well suited for large, decen-
tralized distributed computing clusters, such as the
Folding@Home project. Not only is this a demonstration
that such distributed computing clusters can be used to
study long time-scale kinetics with molecular dynam-
ics—we stress that this is likely the only way such calcula-
tions could have been practically performed, considering the
great computational demands of these calculations.

RESULTS

Protein �-Helices

To test the methodology presented above, we have
simulated the folding of two different �-helical pep-
tides. One sequence we examined, the “Fs peptide”
Ac–A5(A3RA)3A–NH2, has been shown experimen-
tally to have biexponential kinetics, with characteris-
tic times of 10 ns and 160 � 60 ns.10 Helices are
believed to form via nucleation,30,31 which is influ-
enced by the disorder in a system (either as a nucle-
ation accelerator or blocker), analogous to a liquid
with impurities. In our system, the arginine residues
could be considered to be an analog of these impuri-
ties that blocks propagation, and it is interesting to
consider the role of this disorder in the sequence
above, i.e., whether the arginine residues affect the
nucleation processes. To address this, we have also
folded a pure poly-A chain, Ac–A20–NH2.

We have been able to fold both of these protein
sequences and find rates comparable to experiment at

a temperature of 10°C. The initial configurations were
completely elongated chains (
 � �135°, � � 135°).
Qualitatively, both the poly-A helix and the Fs pep-
tide folded by first undergoing nucleation followed by
propagation toward the termini. We found propaga-
tion in both directions (N to C and C to N), although
we do not have sufficient statistics to determine a bias
in propagation direction.30 Quantitatively, the Fs pep-
tide folded (i.e., reached 15 helical residues, the value
expected from experiment10) in 82 � 60 ns in our
simulations. Note that while 7 runs were used for this
average, 2 of the 7 Fs peptide runs did not fold after
160 ns. Since these runs were included in the average
as folding in 160 ns, the average is somewhat lower
than it should be. However, since the experimental
rate is 1/160 ns, one would expect that on average 4.4/
7 [63% � 1 � exp(�kt)] of the runs would fold after
160 ns, whereas we observed 5/7, which is well within
the experimental bounds.11

Moreover, our simulations capture some finer de-
tail about the nature of folding. We see fast early
events, as found experimentally. The alanine-rich N-
terminal part of the Fs peptide folded very quickly, in
15 � 10 ns, consistent with the observation of N-
terminal fluorophore quenching in 10 ns by Eaton and
co-workers11 and the faster rate observed by Dyer and
co-workers.10 The poly-A helix folded considerably
faster (18 � 8 ns, out of 8 runs) and typically had
more helical content (17.8 residues vs 15.1 for the Fs
peptide).

Apparently, the arginine residues are responsible
for the differences in these folding rates by acting as
blockers of helix nucleation and propagation. Looking
at the formation of secondary structure vs. time (see
Figure 2, right), we see that helical propagation halts
at the arginine residues (R) and often the completion
of helix formation requires additional nucleation
events. While our eight poly-A helix runs did show
stalling of propagation (Figure 2), these events were
not localized to any particular point in the chain. Why
does arginine limit propagation? We suggest that the
long Arg side chain significantly limits its mobility,
and moving into a helical 
/� orientation thus occurs
much more slowly.

Nonbiological Helices

How generally applicable and accurate is the coupled
simulation method? To address this question, we have
applied this method to study the folding of a nonbio-
logical helix, a 12-mer of polyphenylacetylene
(PPA).12 This polymer can be considered to be a
nonbiological analog of polyalanine, since it is a ho-
mopolymer with a simple side chain that folds into a
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helix.12 We have previously shown13 that this poly-
mer folds to a helix on the tens of nanosecond time-
scale, in accordance with previous experimental ob-
servations.14 We find that our ensemble dynamics
method works well for PPA. The mean folding time
and folding time distribution are consistent with brute
force, traditional simulations of PPA.13 This is dem-
onstrated by the agreement in mean folding times
between the two methods and the similarity of the
folding time distribution (see Figure 3 and Table 1).

C-Terminal �-Hairpin of Protein G

�-Helices and �-hairpins together represent the most
ubiquitous secondary structural elements in proteins.
In a previous section, we discussed our simulation
results for helices and now we concentrate on hair-
pins. We have recently reported a full-atom, implicit-
solvent simulation of folding of the hairpin at a bio-
logically relevant temperature,32 and here we briefly
summarize those results. We have obtained a very

large ensemble of conformations, which includes
mostly partially folded structures, as well as eight
complete, fully independent folding trajectories.
These data sets allow us to determine the key trends
characterizing the folding process and determine sev-
eral average properties that have been measured or
could, in principle, be measured experimentally.

Based on our results, we can estimate the folding
rate of the hairpin in the following way: we have
simulated 27 independent runs, each consisting of M
� 100 clone simulations that, on average, completed
approximately 14 ns of simulated time, bringing the
total to approximately 38 �s of real time simulation.
Out of 2700 simulations, we have detected eight com-
plete folding events, which (if we assume single ex-
ponential folding kinetics) results in an estimated
folding time of approximately 4.7 �s. This prediction
is in excellent agreement with the experimentally
measured time of 6 �s.16,32

Our results offer the following picture of the fold-
ing mechanism (Figure 4). Folding from a fully ex-

FIGURE 2 Folding simulation of �-helices. Shown above are trajectory data for simulations of
the poly-A helix (left) and Fs peptide (right). Top: number of helical units vs time (dotted line) and
energy variance vs time. We see that peaks are associated with nucleation events. Bottom: Secondary
structure formation vs time: red, yellow, and blue denote helices, �-sheets, and turns respectively.
In both cases, we see nucleation events (corresponding to energy variance peaks). However, in the
case of the Fs peptide, nucleation events did not occur at the arginine residues (R) and propagation
typically was blocked at these residues (also seen in the other seven runs we performed, data not
shown). We estimated the time by multiplying the directly simulated time t by the number of
processors M (M � 24 and M � 128 for the left and right trajectories, respectively).
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tended conformation begins with a rapid collapse to a
more compact structure. During this time, various
temporary hydrogen bonds form, condensing the pep-
tide and decreasing the costly loop entropy that ham-
pers the formation of the hydrophobic core. These
temporary hydrogen bonds form and break; their pat-
tern, which varies from run to run, has no resemblance
to the final hydrogen-bonding pattern of the hairpin.
Next, an interaction between the hydrophobic core
residues is established. This is clearly the central

event in the folding process and most probably its
rate-limiting step. Note that at this point the core is
still not fully formed: the initial hydrophobic interac-
tion most often involves just two hydrophobic resi-
dues on the opposite sides of the future hairpin. Full
formation of the core typically appears simulta-
neously with the establishment of final hydrogen
bonds.

This pathway was also suggested by several other
simulation methods. Pande and Rokhsar reported the

FIGURE 3 Quantitative validation of our method. We plot the folding time distribution for a
12-mer PPA helix calculated from the ensemble dynamics (gray) and traditional molecular dynam-
ics (black) methods. We find excellent agreement with both simulation and with experiment (which
finds a characteristic time of �10 ns). We calculated the folding time as Mt, where t is the simulation
time of the individual trajectory and M � 20 processors were used. The quantitative agreement here
shows that one can indeed achieve a linear speed-up using 20 processors for the 12-mer PPA folding
problem. Inset: a folded PPA 12-mer.

Table I Summary of Predicted vs Experimentally Measured Folding Timesa

Protein/Molecule
Predicted time

(ns)
Experimental time

(ns) Experiment reference

Polyphenylacetylene (PPA) 5.3b 10 14
Fs peptide [Ac–A5(A3RA)3A–NH2] 127c 160 � 60 10, 11
C-terminal �-hairpin of protein G

(Ac–GEWTYDDATKTFTVT-ENH2) 4700 � 1700 6000 15, 16
Villin headpiece 20,000d 11,111 37, 38

a We see a very strong correlation between our prediction and experiment. For a direct correlation, we find R2 � 0.993, p value � 0.008,
and for a correlation of the log of these times, to match Figure 8, we find R2 � 0.993, p value � 0.000026.

b PPA folds with nonexponential behavior.
These numbers report the fast time in a double exponential fit.
c If average the folding times of the runs that folded, we get 82 � 60 ns. However, if we include the data for the runs that did not fold,

we see that 5/7 folded in 160 ns; therefore using 5/7 � 1 � exp(�kt) leads to a time of 1/k � 127 ns.
d This number represents an estimate based on one folding event, and therefore has a large error and thus is likely reliable solely as an order

of magnitude prediction.
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results of high temperature unfolding and refolding of
the �-hairpin, in which a discrete unfolding pathway
was recognized to include a hydrophobically stabi-
lized intermediate (“H” state) with only the Val54
side chain being released from the core and little
hydrogen bonding occurring.19 Karplus and co-work-
ers used multicanonical Monte Carlo simulations to
look at folding of the hairpin with similar results.33

Garcia and Sanbonmatsu35 and Berne and co-work-
ers34 later verified the existence of this intermediate
through a temperature-exchange Monte Carlo/molec-
ular dynamics hybrid model of unfolding in which the
thermodynamics of the unfolding events are well de-
scribed.35 They note that these intermediates appear
with, on average, 2 fewer hydrogen bonds than the
folded hairpin. This “H” intermediate was then ob-
served in mechanically driven unfolding simulations
performed by Bryant et al.,36 who describe it as in-
cluding a nearly assembled core and very little back-
bone hydrogen bonding.

The picture of the folding process that emerges is,
in essence, a blend of the hydrogen-bond-centric and
the hydrophobic-core-centric views of hairpin fold-
ing: nonspecific hydrogen bonds are important in the
initial stages of folding, but the key event that stabi-
lizes the U-shaped precursor of the hairpin and guides
the downstream folding process is the formation of a
hydrophobic interaction between core residues. Final
hydrogen bonds appear later, around the same time
the full formation of the hydrophobic core occurs, and
these continue to fluctuate even after folding is com-
plete.

Villin Headpiece

We have also simulated the folding of a thermostable,
fast folding,37 36-residue �-helical subdomain (pdb-
code 1VII) from the villin headpiece38,6 (the C-termi-
nal domain of the much larger villin actin binding
protein). Figure 5 details the nature of this folding
trajectory. We start from a completely elongated
structure and then see rapid relaxation into a random-
walk unfolded state (“U”). Next (Figure 5a), the C-
terminal helix forms very quickly (at the tenth gener-
ation, “G10” �250 ns � M t � 250 � 10 generations
� 0.1 ns/generation; see Methods for details). This
time is consistent with helical folding times found
experimentally39 and in simulation.8 The protein then
collapses, driven by the attraction of its hydrophobic
groups. While many residues have native-like second-
ary structure (see Figure 5b), there is a large degree of
non-native side-chain interaction, such as the contact
of TRP24 and PHE36 with hydrophobic core resi-
dues, although they are solvent exposed in the native

structure. This intermediate collapsed thermodynamic
state (“I”) consists of an ensemble of many confor-
mations with partial native secondary structure, but
confounded by a lack of native side-chain packing.

The protein remains in this state for a very long
time (the equivalent of �3.2 �s) until a thermal
fluctuation occurs which breaks key non-native inter-
actions that were preventing the formation of the
hydrophobic core. Once these non-native contacts are
broken, the protein rapidly folds to its native state
(“N”). Looking at this transition in more detail (Fig-
ure 6), we see that in order to break non-native con-
tacts (such as, but not limited to, the interaction be-
tween PHE11 and PHE36 in G200), the protein ex-
pands, breaking many contacts (G210), and then
collapses into its native fold (G225), as identified by
a root mean square deviation (RMSD) similar to that
found by exploring the native state in our unfolding
simulation (i.e., 3–4 Å; see below). This event occurs
after the equivalent of 5.5 �s, which is within the time
estimated experimentally (on the order of 10 �s).37

Since PHE36 forms non-native (misfolded) contacts
in this intermediate state (as well as the intermediate
found in the Kollman simulation6), we predict that
removing this bulky hydrophobic side chain would
likely increase the folding rate.

We have performed four other coupled simulations
that have also each reached the 5 �s time scale (data
not shown). All of these trajectories have reached “I”
(RMSD between 5 and 7 Å, radius of gyration Rg

between 7 and 10 Å), but none have reached the N
state. Statistically, this is not surprising and can be
used to estimate the folding rate (see Methods,
above): if the mean folding time for villin were 20 �s
and it follows exponential kinetics, then one would
expect that 20% of runs would fold in 5 �s, in
agreement with our results.

We have also used Folding@Home to study the
native state of villin, i.e., by starting simulations from
the NMR structure.38 One use of such simulations is
the determination of the variability of conformations
in the native state ensemble. Moreover, since our
method allows us to simulate events that would occur
on the microsecond time scale, we should also be able
to simulate villin unfolding under experimental con-
ditions (e.g., 300 K). We see (Figure 7) that confor-
mations within the native state typically have a 3–4 Å
RMSD from the NMR structure. Thus, we identify
our “N” state with the native state of this protein since
our folding simulation reaches an ensemble of con-
formations with �4 Å RMSD (our conformation from
the folding run, which was most similar to the NMR
structure, had a 3.3 Å RMSD). Moreover, our native
state simulation was run long enough to explore un-
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folding to the intermediate state: the protein did not
completely unfold during the simulation time scale
(	1 �s). However, a transition to the partially folded
intermediate (I) was detected.

Finally, we compare our results to what one might
expect from protein folding theory. One of our pri-
mary results is that folding appears to proceed through
transitions between free energy minima: starting in an

unfolded state (U) to an intermediate (I) and then to
the native state (N) (e.g., see reviews Refs. 1–3 and
40, and references therein). As previously dis-
cussed,1–3 the collapse to the I state appears to be
driven by hydrophobic interactions. However, consid-
ering that villin is one of the fastest folding proteins
currently known, it is interesting to consider that
many of these interactions were non-native.
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While there is little structure in U, the intermediate
I is collapsed, with some native tertiary structure,
much non-native structure, and little side-chain pack-
ing. Thus, I is very much like the molten globule
intermediates found in other proteins.41 Also, the in-
termediate state found by Duan and Kollman6 fits our
I state, since it is collapsed, partly native, but missing
certain native contacts, and satisfies our I state defi-
nition in terms of the RMSD and radius of gyration.
We see a somewhat cooperative U 3 I transition
(e.g., reflected in free energy barriers in Figure 7a)
and a very cooperative I3 N transition, as predicted
previously.42,43 Indeed, the cooperativity of the I3 N
transition appears to result from side chain packing in
our model, since many non-native contacts must col-
lectively break to allow the formation of native side-
chain packing. It seems highly unlikely that the native
structure could be reached so rapidly through piece-
wise movements without this collective event.

It is clear that any potential set employed to model
atomic interactions will have its limitations. The rel-
evant question to ask is, How good do they need to be
and what would result from errors in these potentials?
Since we do see folding to the native state, it appears
that the potentials we used were sufficient in this case.
However, we cannot rule out the possibility that in our
model, the I state is comparably (or more) stable than
the N state. This could be the result of slight errors in
the potentials.44 Much like adding denaturant in a
physical example, adding errors to a potential reduces
the energetic favorability of the N state and thus
makes the I state relatively more favorable due to its
entropic advantage.44

DISCUSSION

Scalability of the Algorithm

As more computers become accessible to distrib-
uted computing methods, it is important to under-
stand the limits of the scalability of the method, i.e.,
the limits to the number of processors one can use
to achieve a speed increase. While this method can
yield significant speed improvements for simulating
complex systems (and scalability considerably be-
yond traditional parallel MD), there are some im-
portant limitations to its scalability we must con-
sider. For example, simulating a process where the
mean time to fold tfold � 100 ns using M � 106

processors will not necessarily mean that one will
achieve folding events using only tfold/M � 100 fs
trajectories. The scalability will be inherently lim-
ited by the barrier crossing time tcross (i.e., the time
spent actually crossing the barrier, not including the
much longer time spent “waiting” in the free energy
minima, which dominates the folding time tfold).
Since the speed increase from our method is due to
the elimination of the waiting time, we expect that
M 
 tfold/tcross additional processors will not give
any additional speed increase.8,9 Thus, the bounds
of scalability for this method are also related to an
interesting physical question: How much time is
required to actually cross the free energy barrier?
This time can be quantified by using our method to
look for the limits of scalability within our tech-
nique.

For the proteins we have examined, it is likely that
this time is on the hundreds of picoseconds to nano-
second time scale. It is interesting to consider how

FIGURE 4 A detailed analysis of a folding trajectory of the �-hairpin from the C-terminal
segment of protein G. (a) Cartoon representation of the folding trajectory; the backbone of the
peptide is represented as a gray trace; the core hydrophobic residues (Trp43, Tyr45, Phe52, Val54)
are shown in dot representation; (b) RMSD from the 1GB1 structure of the hairpin (residues 43–54),
radius of gyration, and the number of backbone–backbone hydrogen bonds; (c) distance between
key hydrogen bonding partners (green: Trp43–Val54; red: Tyr45–Phe52), and the minimum
distance between Trp43 and Phe52 (black). Note that the minimum distance between Trp43 and
Phe52 reaches its final value before the key hydrogen bonds are established; (d) solvation energy
(Esolvation), charge–charge energy (Echarge), and total potential energy vs time. The initial hydro-
phobic collapse of the unfolded peptide correlates with a sharp decrease in Etotal, while the
attainment of the final structure correlates with Etotal reaching its final value. A significant deviation
around G160 of Echarge and Esolvation from their final value is correlated with the temporary breaking
of the key Tyr45–Phe52 hydrogen bond; (e) a concise summary of the key events along the folding
trajectory (color code: yellow—high; violet—low). HB-ij denotes the distance between the hydro-
gen bonding partners i and j; min-kl denotes the minimum distance between residues k and l. Note
that the establishment of the hydrophobic Trp43–Phe52 interaction is the earliest event of signifi-
cance along the trajectory. Time is reported in the number of generations: roughly, 1 generation
corresponds to 100 processors � 0.1 ns/generation/processor � 10 ns/generation.
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this minimum time varies with the folding time. Since
there need not be any correlation between these times,
it is possible that slower folding proteins (e.g., those
which fold on the millisecond and longer time scale)
could be folded using our method with current micro-
processors by simply employing more of them. In-
deed, computational resources on the million-proces-

sor scale have been proposed, such as IBM’s Blue
Gene, as have other distributed computing projects.
With such computational resources, it is possible that
we could push our simulations from the hundreds of
microsecond timescale to fractions of a second, al-
lowing us to reach timescales relevant for slow fold-
ers.
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Limitations of Our Methods to Predict
Folding Rates and Mechanisms

Below, we summarize the approximations involved in
our rate determination method above, and our justifi-
cations and reasoning of these approximations. First,
we assume that the barrier crossing probability den-
sity is exponential. This does not mean that the total
kinetics is single exponential, but that the time to
cross an individual barrier is exponential. Second, we
assume that transitions are correctly identified—i.e.,
that there are no false positives or false negatives.
This second assumption is of greater concern. While
we cannot know for certain that we are correctly
identifying transitions, our ability to predict rates sug-
gests that incorrect transition prediction is not an
issue. (Perhaps this may be due to the fact that tran-
sitions were rarely detected in the larger proteins
studied and were typically found at the beginning of
the folding trajectories—see the section Is Transition
Detection Really Necessary? below). However, we
can mathematically address the consequences of in-

correct transition detection and nonexponential kinet-
ics, as we have done in a previous work.8 Finally, in
our error analysis above, we can calculate the statis-
tical uncertainty of our rates. Even with only tens of
successful folding trajectories, the statistical uncer-
tainty is negligible.

Accuracy of Implicit Solvent Models for
Protein Folding

For all of the folding simulations presented here, we
have used the GB/SA method.27 While GB/SA makes
connections to physical arguments about the nature of
interactions via internal vs external dielectrics, it is an
empirical theory. Nevertheless, GB/SA performs very
well at predicting the solvation free energy of small
molecules,27 and it is perhaps not surprising that it
appears to be sufficiently accurate in the prediction of
the folding rate of small proteins and peptides. More-
over, Caflisch and co-workers have also had success-
ful results using even simpler implicit solvation mod-

FIGURE 6 Examination of the I to N transition of the villin headpiece in detail. We see that in
order to correctly fold, the protein must first unfold and open its conformation in order for it to form
the missing native state interactions. Visualization is the same as in Figure 2a. See text for more
details. The final state agrees reasonably well with the average refined NMR conformation from the
Protein Data Base.38

FIGURE 5 Anatomy of a folding trajectory of the villin headpiece. (a) Significant representative
conformations along the trajectory. The protein is visualized as a backbone trace with the aromatic
residues (PHE7, PHE11, PHE18, TRP24, PHE36) space filled and colored gray, red, cyan, yellow,
and blue respectively. (b) Secondary structure from DSSP51 (black � helix, gray � turn, white � no
structure). (c) Native contact density for each residue (blue � low, red � middle, yellow � high).
(d) Radius of gyration and RMSD from the native state (the native state is defined from the average
of a 10 ns traditional MD simulation at 300 K starting from the NMR structure38) are plotted; we
use only �-carbons in this calculation and omit the first and last 2 residues in the RMS calculation
(as they are unstructured in the refined NMR conformation). (e) Solvation free energy (Fsolvation),
charge/charge energy (Echarge), and total internal free energy (Ftotal) vs time. While Ftotal gradually
decreases over the whole simulation, we see that Fsolvation has an initial decrease, but then gradually
increases over the simulation, whereas Echarge consistently decreases. In fact, Echarge and Fsolvation

are highly correlated (R2 � 0.92) during this trajectory. (f) Fraction of all and native contacts vs
time. In all frames, time is on the horizontal axis. It is most natural to report time in terms of 100
ps “generations” (see Figure 1); roughly, one can approximate time as8 250 processors � 0.1
ns/generation/processor � 25 ns/generation. We label conformations by their generation (e.g.,
“G225” in the upper right).
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els (distance-dependent dielectric with a surface area
term following Still et al.27) in folding simula-
tions.31,45 However, it is unclear whether similar ac-
curacy (in either rate prediction or even in reaching
the native state) would be achieved using implicit
solvation models for folding simulations of larger
proteins.

Second, we stress that when employing any im-
plicit solvent model for the faithful reproduction of
kinetics, one must take into account the viscosity of
the solvent (in addition to the dielectric and hydro-
phobic aspects). We have done so using Allen’s sto-
chastic integrator, as implemented in Tinker.25 This
scheme is an extension to Langevin dynamics, and
includes both viscous drag and random forces in the
force equation, to match the viscosity of the solvent
and the random thermal fluctuations that the solvent
would apply to the solute. However, unlike pure Lan-
gevin dynamics, this method scales the drag and the
random force by the solvent-exposed area in order to
only apply these solvation effects to atoms that are
actually solvent exposed. Often, implicit solvation is
run without any viscosity model (or viscosity consid-
erably lower than water,45 i.e., the viscosity parameter
	 �� 90/ps), which leads to differences in sampling
and cannot lead to accurate rate predictions. This is, in

some cases, considered to be an advantage of implicit
solvation: one would expect that the speed of dynam-
ics is inversely proportional to viscosity. However,
since the magnitude of the random forces is also
proportional to the viscosity, decreasing the viscosity
diminishes the strength of these random forces. Coun-
terintuitively, this may actually decrease the sampling
as it is these very random forces that enable the
system to cross free energy barriers.18 Since our goal
is the faithful reproduction of folding kinetics, we
have chosen a viscosity damping parameter in order to
match that of water.46

Third, it is interesting to consider the possible
differences between implicit and explicit solvation
models. While implicit solvation models can capture
many important properties of the solvent, such as the
dielectric effect, hydrophobicity, and viscosity, there
are effects that are missing. In particular, any physical
effect that arises from the discrete nature of water
molecules, such as proteins hydrogen bonding to wa-
ter, solvent-separated minima, or the drying effect,
will be lost. Again, it is important to keep in mind that
all models are approximations, and the relevant ques-
tion is not whether a model is “correct” (since all
models are incorrect at some level), but whether a
given model is “correct enough” to capture the rele-

FIGURE 7 Rough characterization of the underlying free energy landscape for the villin head-
piece. We plot the log of the probability of finding conformations with a given Rg and RMSD in (a)
folding and (b) unfolding simulations. We find three distinct probability maxima (which correspond
to free energy minima): an unfolded state, molten-globule-like intermediate, and the native state.
This landscape generated from kinetic data qualitatively agrees with previous, more extensive
thermodynamic calculations.2
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vant physics to faithfully reproduce and predict the
physical effect of interest. For the small proteins we
have examined, it appears that the model we have
employed is indeed “correct enough” for predicting
rates (see Figure 8 and Table I). This implies that
either the discrete nature of water is not relevant for
folding, that folding rates are fairly robust to such
inaccuracies of the model, or that there is a convenient
cancellation of errors. In order to discern between
these two possibilities, one must resimulate these pro-
teins with explicit solvation models and compare the
rate and mechanistic predictions; if these predictions
agree, then perhaps the potential gain in accuracy of
explicit solvent models would indeed not be relevant
for folding kinetics. Furthermore, we stress that ex-
plicit solvent models make approximations as well,47

and there is no reason why an arbitrary explicit sol-
vation model would necessarily be better than a well-
designed implicit model.

Finally, it is important to consider that the question
of the validity of implicit solvation models goes be-
yond a simple debate of the validity of particular
computational methodology, but also impacts the way
in which one thinks of protein structure in general. If
explicit solvation were critical to protein folding, then
it is likely that one should not think of protein struc-

tures without the requisite cloud of water molecules it
interacts with, as it is the very discrete and potentially
structural aspects of the water that play a large role in
folding. However, if implicit solvent models are suf-
ficiently accurate, this suggests that a structural pic-
ture of a protein alone (implicitly considering the
effects of water, such as hydrophobicity, etc., but not
with a discrete, structural form in mind) is indeed
sufficient.

Alternative Methods to Simulate
Dynamical Events on Long Time Scales
Using Low Viscosity Simulation

Water is a relatively viscous solvent. Indeed, in quan-
titative terms, the damping force of water is on the
order of 	 � 100/ps. It is intriguing to consider
whether one can simulate the effective result of long
time-scale events by simulating the effect of much
lower viscosity solvents, say 	 � 1/ps, while keeping
all of the other properties of a water-implicit solvation
model unchanged. This is appealing since this is triv-
ial to perform with implicit solvation models and this
ability to explicitly set the viscosity of the solvent in
the model may represent one of the great strengths of
using implicit solvent models.

FIGURE 8 Comparison of theoretical rate predictions from @Folding@Home and the according
experimental folding rate determinations. We compare the folding rates for the proteins and
polymers described in this review: PPA, polyalanine-based helices, the C-terminal �-hairpin from
protein G, and the villin headpiece. If our folding rate prediction were perfect, all points would lie
on the diagonal line. The agreement strongly suggests that our method can accurately predict the
absolute folding rate for small proteins, peptides, and foldamers.
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If one were to decrease the viscosity by 100 times,
could one simulate 10 ns and expect to get 1000 ns
� 1 �s of sampling? This question has been ad-
dressed in many models and systems. For example,
Klimov and Thirumalai48 have shown that (for a
coarse-grained protein model) the rate of folding in-
creases with decreasing viscosity to a point (	 	 1/ps)
at which the rate decreases with decreasing viscosity.
This nonmonotonic dependence can be understood in
terms of the dual role of the solvent viscosity: viscos-
ity retards motion through the solvent, but also creates
the random forces that are needed to drive the system
over energy and free energy barriers. Thus, the rate
should be optimal at intermediate viscosity. If this
peak in the rate vs viscosity curve does peak at 	
	 1/ps, then one should expect an increase in sam-
pling at viscosities in between 1/ps and 100/ps, and
for thermodynamic properties, this increased sam-
pling should be beneficial. However, it is still unclear
whether kinetic properties would be unchanged by
significant changes in the viscosity.

Alternative Methods to Simulate
Dynamical Events on Long Time Scales
Using Large-Scale Distributed
Computing

In this review, we have discussed protein folding
simulations using ensemble dynamics, our parallel
replica-like method intended to handle free energy
barrier crossing problems. The greatest weakness of
this method rests in the need for transitions and for the
accurate identification of these transitions. Our sug-
gested means to identify transitions, looking for en-
ergy variance spikes during dynamics, has the benefit
of being a purely thermodynamic method and thus
does not use any information of the protein native
state or any folding-related hypothesized reaction co-
ordinates. However, if transitions are incorrectly iden-
tified, the validity of the resulting data is put under
question. Considering that great computational re-
sources are needed to generate the folding simulations
presented here, this limitation could be very expen-
sive computationally—the failure to accurately iden-
tify transitions may mean that the resulting data set is
invalid.

It is interesting to consider a simpler method,
which does not have the liabilities described above.
Namely, instead of loosely coupling simulations (i.e.,
restarting simulations after transitions have been de-
tected), one could simply run a large number M of
completely independent simulations. For single expo-
nential kinetics, we would still gain an M times speed-
up (as described above). However, even if the reaction

under study did not have single exponential kinetics,
independent trajectories might still have value. In-
deed, in a sense, a set of thousands of simulations
each on the tens of nanosecond time scale is a data set
that stands on its own. For example, one could inter-
pret the results for single-exponential kinetics, by
examining the fraction f(t) that fold in time t and
fitting a rate with the slope. However, one would not
be limited to this exponential kinetics analysis, and
this data could be reanalyzed a postiori to test new
hypotheses or kinetic models. Considering the great
computational cost of producing these data sets, this
more “pure” method for simulating kinetics has a
great appeal. Indeed, we have reexamined the folding
of villin with uncoupled trajectories49 in this manner
(B. Zagrovic, et al. J Mol Biol, 2002, in press) and it
will be interesting to determine how the uncoupled
simulations differ (e.g., in rates and mechanism) from
those presented here.

Is Transition Detection Really
Necessary?

The discussion above regarding the possibility of us-
ing independent trajectories and still gaining a speed
increase linear with the number of processors raises
the question, Must one bother with transition detec-
tion as used here? Another way to examine this ques-
tion is to ask with what frequency were transitions
detected in the examples described here. For the helix
folding simulations, 2 or 3 transitions were detected
before the simulation reached the folded state. The
first transition accompanied the first formation of he-
lical structure and the other transitions occurred dur-
ing propagation. For the larger molecules, transitions
were even more infrequent. For example, the �-hair-
pin and villin simulations typically had a single tran-
sition that occurred early in the folding process, ac-
companying the collapse of the protein chain.

Thus, we find that for the larger molecules, transi-
tion detection was likely not necessary, since the
transitions occurred earlier and thus the simulations
were essentially running independently (as suggested
in the subsection above). We suggest that the transi-
tions were not needed since these larger molecules
fold with single exponential kinetics, and thus have a
single rate-limiting step. The helices are potentially
different: the rates of nucleation and propagation of
helices in our model are not highly separated (e.g., see
the trajectories in Figure 2) and thus transition detec-
tion may be needed in the helix case, but not for the
�-hairpin or villin molecules.

106 Pande et al.



CONCLUSIONS

Comparison to Experiment

With a wide range of molecules under study, from the
nonbiological PPA helices to the 36-residue villin
headpiece, we have simulated a set of molecules with
a range of folding times spanning over four orders of
magnitude, from nanoseconds to tens of microsec-
onds. Since the primary means of comparison to ex-
periment is the comparison of rates determined by
simulation and experiment, we concentrate on our
prediction of rates. Figure 8 shows a striking agree-
ment between predicted and experimental rates (see
Table I for details). Of course, with just four mole-
cules simulated, it is unclear whether this agreement
is simply fortuitous. In order to more fully address
this question, we plan to simulate the folding kinetics
of additional molecules, including larger and more
slowly folding proteins. Indeed, more recent work on
a small ���-fold (C. Snow et al., Nature, 2002, in
press) and villin (B. Zagrovic et al., J Mol Biol, 2002,
in press) also result in strong agreement with experi-
mental rates.

With this quantitative agreement with experiment,
it is also interesting to ask how do our results reflect
upon the quality of modern force fields? On the sur-
face, one might conclude that our agreement with
experiment is evidence that force fields are suffi-
ciently accurate. We stress that the only question that
can truly be addressed by our work is whether force
fields are sufficiently accurate to reproduce experi-
mental rates and structures. Ignoring for the moment
the possibility that the agreement may be fortuitous,
the agreement between our simulations and experi-
ments suggest that force fields are sufficiently accu-
rate to predict the folding rates of small proteins.
Indeed, this accuracy can be quantified in terms of the
strong correlation (R2 � 0.996) and low p value
(0.000026) of the logarithms of the predicted to ex-
perimental rates. However, this statement should def-
initely not be overgeneralized—it is unclear whether
the analogous rate prediction for large protein folding
would be similarly accurate or whether these results
are fortuitous (such that the simulation of additional
proteins would weaken the correlation). We are cur-
rently addressing this question by examining the fold-
ing of different and larger proteins.

What Have We Learned About the
Protein Folding Mechanism?

The question of “how proteins fold” has been asked
for decades, and remains a difficult problem due to the

complexities and difficulties of computational and
experimental methods. However, the methods pre-
sented here have allowed us to understand, for the first
time, the folding mechanism for some small fast fold-
ing proteins, in atomistic detail with experimentally
validated rates (Figure 8 and Table I). We have been
able to discern the mechanism of a few particular
proteins, but it is unclear whether we can expect these
to generalize to larger and more complex proteins. An
understanding of the mechanism of larger proteins
will likely require further direct simulation. However,
considering the diversity of mechanistic results found
even in these small proteins, it seems reasonable to
consider that there may not be a single, universal
folding mechanism. Indeed, evolution may be mech-
anistically agnostic and may have selected proteins
for function, without concern for folding mechanism.
This could lead to a variety of protein folding mech-
anisms (even for sequences which fold to the same
structure), and thus there may not be a single answer
to the question of “how proteins fold.”

Future Perspectives

The ensemble dynamics technique coupled with dis-
tributed computing has allowed us to break funda-
mental computational barriers in the dynamics of
complex systems, such as protein and polymer fold-
ing. However, one need not build a distributed com-
puting infrastructure to gain the benefits of our meth-
ods. Indeed, with a cluster accessible to almost any
group (e.g., a hundred PCs), one can simulate 100 ns
in a day (assuming 1 ns/processor). This is a signifi-
cant advance over state of the art of traditional parallel
molecular dynamics.6 Of course, the combination of
our method on top of traditional parallel MD (i.e.,
using traditional MD to speed up individual simula-
tions to the maximum scalability of parallel MD and
then using our method to statistically sample runs)
may lead to the greatest advance, especially on mas-
sively parallel architectures with millions of proces-
sors, such as IBM’s proposed million processor Blue
Gene supercomputer.

Moreover, this technique should have broad appli-
cability to any dynamical system that progresses by
crossing free energy barriers, especially in the most
intractable problems with high free energy barriers. It
could also serve to augment existing computational
methods, such as path sampling20 (which requires
simulating a fast trajectory over the relevant free
energy barriers) or the determination of transition
states using pfold analysis50 (which is currently hin-
dered by simulations dwelling in transiently stable
intermediate states).
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Finally, with the ability to reach time scales for
protein folding in all-atom simulations (i.e., hundreds
of microseconds), it is natural to ask whether the
potential sets are adequate for folding. Indeed, due to
the great number of calculations involved, distributed
computing networks will most likely play an impor-
tant part in providing sufficient computational power
to extensively test and validate new potential sets.
Considering the omnipresent role of force fields in
structural biology, ranging from simulations, to infor-
matics, to x-ray and NMR refinement, the ability to
quantitatively test force fields will likely play a criti-
cally important role in structural biology and virtually
all related fields.
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issue for Peter Kollman. Peter was a great inspiration as a
scientist and a senior colleague—generous with time and
with praise and with numerous useful and encouraging
suggestions. Indeed, in many ways our work on folding
dynamics was inspired by his work with Yong Duan on the
villin headpiece, as it opened our eyes to see just how close
the field was to simulating time scales relevant for folding
and thus to finally directly simulate protein folding.
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