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There are many unresolved questions regarding the role of water
in protein folding. Does water merely induce hydrophobic forces,
or does the discrete nature of water play a structural role in
folding? Are the nonadditive aspects of water important in deter-
mining the folding mechanism? To help to address these questions,
we have performed simulations of the folding of a model protein
(BBA5) in explicit solvent. Starting 10,000 independent trajectories
from a fully unfolded conformation, we have observed numerous
folding events, making this work a comprehensive study of the
kinetics of protein folding starting from the unfolded state and
reaching the folded state and with an explicit solvation model and
experimentally validated rates. Indeed, both the raw TIP3P folding
rate (4.5 � 2.5 �s) and the diffusion-constant corrected rate (7.5 �
4.2 �s) are in strong agreement with the experimentally observed
rate of 7.5 � 3.5 �s. To address the role of water in folding, the
mechanism is compared with that predicted from implicit solvation
simulations. An examination of solvent density near hydrophobic
groups during folding suggests that in the case of BBA5, there are
water-induced effects not captured by implicit solvation models,
including signs of a ‘‘concurrent mechanism’’ of core collapse and
desolvation.

explicit solvation model � distributed computing � molecular dynamics

When considering the nature of the protein folding mech-
anism, because of the dominance of the hydrophobic

effect, one must consider the role of water. Water can be
examined explicitly by studying discrete water molecules. How-
ever, it is common to consider the role of water implicitly in
terms of its bulk dielectric property and interaction with hydro-
phobic groups of the protein. Implicit solvation methods have
been widely adopted in the computational study of folding
dynamics, where such dielectric and hydrophobic properties are
accounted for with continuum models. In addition, it is inter-
esting to consider that experiments assessing the folding mech-
anism (e.g., �-value analysis) are typically interpreted in terms
of an implicit role of water. For example, the stabilization or
destabilization of protein–protein interactions is accounted for
based on physical forces mediated by water, rather than an
accounting of the role of specific, explicit water molecules.

However, there are important properties of water which are
not considered in typical implicit solvation models. In particular,
the nonadditive nature of hydrophobicity leads to the so-called
‘‘drying effect,’’ in which a layer of vacuum surrounds hydro-
phobic surfaces and makes hydrophobic collapse cooperative
(1). In addition, continuum models of water do not account for
the discrete nature of water molecules, which may lead to
differences in protein folding dynamics, such as a cooperative
expulsion of water upon folding (2). It is also known that
structured water plays a role in the folded state of many proteins
(3). Accordingly, one can imagine that water may play a ‘‘struc-
tural role’’ in some or all of the folding mechanism.

Will These Effects of Water, Which Are Not Present in Implicit
Solvation Models, Significantly Alter the Mechanism or
Kinetics of Folding?
This question will be important not only for folding simulations
but also for the mechanistic characterization of folding experi-

ments. To address this question, it is natural to look to computer
simulations of protein folding by using explicit solvation models
for direct comparisons to both experimental and implicit solva-
tion simulation results.

However, even with advances in computational methodologies
in recent years, a folding kinetics simulation in atomistic detail
remains a demanding task (4), and there have been only a few
reports of such studies (5, 6). Moreover, these studies have been
confined to the use of implicit and indirect models of solvation
to reduce the required central processing unit (CPU) time and
storage requirements (5). In this paper, we demonstrate that with
the rapid advance in available computational power, further
development of grid computing methods for studying protein
folding (5–7), and optimizations in molecular dynamics simula-
tion (8), folding simulations with explicit solvent molecules have
now become feasible. We report the result of such simulations,
which marks a successful protein-folding kinetics simulation by
using an explicit solvation model and thus allows us to directly
examine the role of water in the protein-folding process.

Simulating Protein Folding on the Microsecond Time Scale in
All-Atom Detail
The folding of BBA5, a 23-residue miniprotein (Ace-
YRVPSYDFSRSDELAKLLRQHAG-NH2) designed and char-
acterized by the Imperiali group (9, 10), has been simulated with
the Garcia–Sanbonmatsu modified version (11) of the AMBER94
all-atom force field (12) for a protein solvated in 3938 TIP3P (13)
water molecules. This modification sets the torsion potential for
� and � to zero and was demonstrated to be in much better
agreement with experimental data for the helical content than
the original force field (11). Acidic and basic side chains were
protonated by assuming neutral pH, and a chloride ion was
added to account for charge neutrality (totaling 12,200 atoms in
the system). Simulations were performed at constant tempera-
ture and pressure [298 K, 1 atm (1 atm � 101.3 kPa)] with the
GROMACS molecular dynamics suite (8) modified for the
Folding@Home (7, 14) infrastructure. The temperature and
the pressure were controlled by coupling the system to an
external heat bath with a relaxation time of 0.5 ps (15). The
electrostatic interactions were treated by using the reaction field
method with a cutoff of 10 Å (16), and 10-Å cutoffs with 8-Å
tapers were used for Lennard–Jones interactions. Nonbonded
pair lists were updated every 10 steps of molecular dynamics and
the integration step size was 2 fs in all simulations. All bonds
involving hydrogen atoms were constrained with the LINCS
algorithm (17). Starting from an extended conformation, 10,000
independent molecular dynamics simulations were performed
with periodic boundary conditions in a cubic box with an initial
side length of 50 Å to an aggregate time of over 100 �s (�300
CPU years) over 3 wall-clock weeks.
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By using a single exponential model for folding (6), the
probability that a molecule has folded by time t is expected to be

Pfolded(t) � 1 � exp(�kt), [1]

where k is the folding rate. For an ensemble of Ntotal independent
folding simulations, the folding probability Pfolded(t) corresponds
to Nfolded�Ntotal, with Nfolded marking the number of simulations
that have reached the folded state by time t. In the limit of t ��
1�k, this probability can be approximated as

Pfolded(t) � kt. [2]

Accordingly, the folding time constant can be estimated from the
population growth of the folded state as follows (5, 6):

Nfolded

Ntotal
� kt �

1
�

t. [3]

To use this method, a quantitative definition of the folded state
is required. In this work, both secondary and tertiary structure
components were considered. Namely, we defined a conforma-
tion as fully folded when it had native-like secondary structure
elements (a �-turn on residues 2–7 and an �-helix on residues
13–20) and an �-carbon root-mean-squared deviation
(RMSDC�) �3.1 Å from the NMR structure (9, 10). This
RMSDC� is one standard deviation above the average value of
an ensemble of native conformations, which were generated
from an independent set of simulations starting from the exper-
imental native conformations (5, 6). A total of 10,000 native
conformations were sampled in 1-�s simulation time from 100
independent trajectories (10 ns each) with all simulation proto-
cols identical to the simulations that started unfolded. The
population distribution of RMSDC� shows a bimodal pattern
resulting from equilibration between folded and unfolded states.
The average and standard deviation in the folded state were
determined by fitting this distribution with two Gaussian curves
(see the supporting information, which is published on the PNAS
web site).

BBA5 Folding Trajectories in Explicit Solvent
With the definitions outlined above, 13 complete folding events
were observed. Fig. 1 shows the population growth of the folded
state. It is interesting to see that there is a lag phase before the
first folding event. This arises from the fact that the simulations
were started from a somewhat extended structure to avoid

biasing the resulting folding dynamics. This choice of starting
condition allows one to generate a more diverse ensemble of
folding events but at the cost of additional molecular dynamics
simulation for equilibration to the unfolded state. This equili-
bration is manifested in the �10 ns of simulation required before
any folding events occur. To account for this lag phase, fitting for
this curve included two parameters: the folding time constant �
and the lag time t0 with a basis function

P�t� � � 0 �t � t0�
�t 	 t0�/� �t 
 t0�

. [4]

From the TIP3P simulation data, the estimated folding time
constant is found to be 4.5 � 0.4 �s. However, if one corrects for
the anomalous viscosity of TIP3P water (18), one gets a time-
constant prediction of 7.5 � 0.7 �s. Both values are in good
agreement with the experimental value of 7.5 � 3.5 �s and the
implicit solvation simulation result of 3–13 �s (6). The lag time
from the fit is 9.4 � 0.5 ns. The primary uncertainty in the
computed rate does not come from the statistical uncertainty in
the fit presented above, but from the systematic error involved
with the sensitivity to the folding criteria (6): varying the
RMSDC� cutoff by � 0.5 Å results in the folding time constant
of 4.5 � 2.5 �s (before viscosity correction) with 8–10 ns of lag
time.

In Fig. 2A, snapshots of a folding trajectory leading to the
lowest value of RMSDC� are presented. One can see that the
final folded structure is very similar to the experimental native

Fig. 1. Population growth of folded conformation (dotted trace). A linear
fitting line for the rate estimation is also presented (solid trace). Vertical gray
bars represent SE (one SD) in the population estimation.

Fig. 2. (A) Snapshots of a folding trajectory ending to lowest RMSDC�. For
simplicity, only the backbone and selected hydrophobic side chains (V3, F8,
L14, L17, and L18) are shown. The turn (residues 2–7) and the helical (residues
12–20) regions are represented in blue and red, respectively. Three solvent
molecules trapped in a hydrophobic pocket are shown in space-fill represen-
tation. Numbers in parentheses are RMSDC� values. (B) Comparison of the
folded structure from the simulations (Left) with the NMR structure (Right).
For the simulation structure, conformations with the lowest RMSDC� were
taken from each of the 13 folding trajectories and aligned to minimize the
deviation. The shown structure is a backbone trace of the Cartesian average
of all 13 conformations. The same averaging scheme was used for the NMR
structure.
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conformation shown in Fig. 2B. To verify the stability of the
folded state thus reached, we have calculated a dwell-time ratio
(Rdw) defined as follows:

Rdw �
�No. of conformations satisfying folding criteria)

(No. of conformations sampled after first folding event)
.

[5]

This ratio will be close to 1 if the folded conformation obtained
from the trajectory is stable within the potential adopted in this
work. If the conformation satisfying the folding criteria is not
stable, however, it will leave the state in a short amount of time,
and the ratio will be close to zero. For the folding trajectories,
the average dwell-time ratio was 59%. The average value ob-
tained with the native ensemble was 58%, displaying an exact
match within the error of the comparison. Because BBA5 is
small, not as stable as large proteins, and quite flexible, one
would expect that the dwell-time ratio would be �100%. The
flexibility in the native ensemble is observed to be mainly
induced by temporary breaks either in tertiary contacts between
the helical part and the �-turn of the protein or in the hydrogen
bond bridges in the �-turn.

Examining the Role of Explicit Water in Hydrophobic Collapse
To examine the role of water in more detail, the first step is to
choose particular degrees of freedom, which will yield insight
into the folding mechanism. In particular, one should choose
degrees of freedom that describe the degree of folding present,
the nature of the hydrophobic core, and the nature of the water
surrounding the core. Toward this goal, we have inspected the
deviation from the native structure (RMSDC�), the hydrophobic
core size (core radius gyration, Rg), and the solvent density (�solv)
along folding trajectories. We define the hydrophobic core to be
the side chains of Val-3, Phe-8, Leu-14, Leu-17, and Leu-18. The
solvent density was calculated by building cubic grids with 0.25-Å
side length, and all grids within van der Waals interaction
distance (sum of the core atom and water van der Waals radii)
from each of the core atoms were selected after excluding the
region occupied by the protein molecule. The number of water
molecules in these selected grids were counted and then divided
by the volume of the grids available to water molecules.

To facilitate direct comparisons, the three metrics described
above were reduced to

�x �
x 	 x�U

x�F 	 x�U
, [6]

where xU and xF represent averages of x from the unfolded and
the native ensembles, respectively (with x: Rg, �solv, RMSDC�).
To obtain statistically meaningful data, all 13 folding trajectories
were aligned such that the first sign of folding in each trajectory
(i.e., RMSDC� 
 3.1 Å with correct secondary structure) is
shifted to the time t	 � 0, and the values for � were averaged over
the 13 trajectories at each aligned time point, resulting in the
time-dependent reduced variables 
�(t	)�, which are plotted in
Fig. 3.

The most striking feature we observe is the coincidence
between the three metrics: the variations of Rg (degree of
collapse) and �solv (degree of solvation�de-wetting) coincide
with the variation of RMSDC� (degree of folding). Namely,
solvent density around the core decreases concurrently with core
collapse in this protein, which we will refer to as the ‘‘concurrent
mechanism’’ of hydrophobic collapse. Here, we stress that the
trajectories were aligned only with the folding criteria (RMSDC�
and secondary structure elements), and the coincidence of Rg
and �solv is not a trivial result of this alignment.

How does this result compare to previous hypotheses regard-
ing the role of water in folding? Recently, ten Wolde and
Chandler (1) proposed that evaporation of water in the vicinity
of hydrophobic polymer chains may provide the driving force for
collapse in folding. They found that the rate-limiting step in the
collapse of a hydrophobic polymer is the collective emptying of
space around the nucleating sites (‘‘de-wetting mechanism’’)
with a large vapor bubble forming around the core. After close
inspections on our folding trajectories, however, we could not
observe such bubbles in our simulations (data not shown).

In some trajectories, however, we find water molecules within
a small pocket formed by core residues during the course of
folding. In Fig. 2 A, for example, three solvent molecules are
found in a pocket formed by core residues after hydrophobic
collapse and shortly before the tight packing of the core (19.2
ns), which are then squeezed out as the trajectory reaches a
folded conformation (24.4 ns). Qualitatively, this is in agreement
with a thermodynamics study by Sheinerman and Brooks (19)
and the minimalist Go-model folding simulations of Cheung et
al. (2), both of which suggest the expulsion of water molecules
in the folding process (‘‘expulsion mechanism’’). If hydrophobic
collapse always occurs by means of this mechanism, we can
expect the solvent density around a hydrophobic group to be
equivalent to or higher than the bulk density during the collapse
process, reflecting the squeezing-out of water molecules.

The de-wetting and expulsion mechanisms described above
differ from one another in the following way. In the de-wetting
mechanism, water will avoid proximity to the partially formed
core, and this vacuum-surrounded primitive core will spontane-
ously collapse to stabilize the system by reducing the solvent-
accessible surface area of core residues: �� would thus decrease
first (de-wetting), followed by a change in �Rg

(collapse). On the
other hand, in the expulsion mechanism, core compaction will
precede water expulsion: �Rg

would decrease to its native-like
value first (potentially with an increase in water density, because
of the squeezing of water molecules out of the core), followed by
transition to a native-like ��.

It is intriguing to consider that the concurrent mechanism
observed in our simulations may be generally applicable to the
hydrophobic collapse and folding of small proteins. It seems
likely that the cores of small proteins (e.g., �50 aa) would be too

Fig. 3. Changes in reduced folding metrics versus shifted time t	: solvent
density (black), core radius of gyration (red), and RMSDC� (blue). Folding sets
in at zero shifted time in each trajectory. For visual clarity, the solvent density
was smoothed by taking bins of five adjacent data points. For the reductions,
(xU, xF) were obtained from the unfolded and native ensembles, with values of
(0.86, 0.73) for the solvent density, (10.4, 6.3) for the core radius of gyration,
and (6.6, 3.1) for RMSDC�.

6458 � www.pnas.org�cgi�doi�10.1073�pnas.0307898101 Rhee et al.



small to induce the de-wetting effect mentioned above (1). Also,
this small core size may limit the relevance of expulsive-like
mechanisms seen in Go models (2). Moreover, the very specific
nature of solvent separated Go-model native contacts may
enhance the likelihood of the expulsion mechanism over what
one would see in simulations with more physically based force
fields. It will be interesting to see how these three mechanisms
interplay in larger proteins whose cores are large enough for the
de-wetting and squeezing effects to play more significant roles.

Are Water Degrees-of-Freedom Coupled to the Transition
State?
What defines the transition state for folding? Is the transition
state completely defined by the protein conformation coordi-
nates or does the particular geometry of water play a role as well?
To test whether the particular arrangement of water molecules
is important in determining the folding pathway, Pfold simula-
tions were performed. Details of Pfold calculations can be found
elsewhere (20, 21). Briefly, 25 configurations were sampled on
folding trajectories with their RMSDC� values ranging from
1.7–7.5 Å. For each configuration, �100 independent simula-
tions were performed with randomized velocity vectors. Here,
Pfold of a given conformation is the probability that it folds within
a 5-ns simulation time. For a two-state transition, conformations
characterized by Pfold � 0.5 belong to the transition state
ensemble and in general, Pfold naturally serves to order confor-
mations along their ideal reaction coordinate (20, 21).

To test whether water coordinates play a role in defining the
transition state ensemble, the original water molecules were
removed and the conformations used for Pfold simulations were
resolvated. The resulting systems were then reequilibrated with
100 ps of molecular dynamics with the protein molecules frozen
to the starting conformations, and the newly randomized water
conformations were used as the starting systems in a second
independent set of Pfold simulations. Differences in Pfold values
between this starting ensemble and the original Pfold ensemble
would thus indicate changes in the location of the new config-
uration along the folding pathway, which would in turn confirm
that water plays a significant role in defining the transition state
ensemble. Fig. 4A shows the relationship between Pfold values
from the original and new solvation configuration. It is clear that
Pfold values for different solvent configurations are in excellent
agreement within the error of our calculations.

Thus, in our simulations, the protein-folding pathway is de-
termined solely by the protein conformation and not by the
surrounding water configurations. This finding can be under-
stood in terms of the difference in time scales of protein and
water dynamics. Because the relaxation time for water dynamics
is short compared with the protein dynamics time scale, any
configuration of water will rerandomize faster than the time
scale of the protein-folding transition. This result suggests that
it is possible for an implicit solvation model to reproduce explicit
solvation results, given that water equilibration appears to be fast
relative to that of protein conformational rearrangement. More-
over, this result also suggests that one need not include water
degrees-of-freedom explicitly in the interpretation of experi-
mental analyses of the transition state, such as �-value analy-
sis (22).

Comparison to Implicit Solvation Models
The de-wetting effect around the hydrophobic group is a liquid–
vapor phase equilibrium process, which is not currently described
accurately with commonly used implicit solvation models based
on estimates of exposed surface area (1). Accordingly, it is
natural to ask whether the folding mechanism with such a model
will be significantly different from explicit solvent simulation.

For the folding of BBA5 in TIP3P water, we find a diffusion–
collision mechanism (23), where secondary structural elements

first form independently and then collide to form the native
structure. This can be observed by inspecting the probabilities of
both secondary structure elements. In Fig. 5, we have compared
the joint probability of simultaneously finding both helix and
turn (P�,�) to the product of probabilities for finding helix and

Fig. 4. (A) Correlation of Pfold values with different solvent configurations in
the explicit solvation model. Error bars represent one SD for each of the
probability predictions. (B) Correlation of Pfold values from implicit and explicit
solvation models.

Fig. 5. Joint probability of finding both turn and helix simultaneously (P�,�)
versus the product of probabilities for finding helix and turn (P��P�) from
explicit (A) and implicit (B) solvation simulations (6), showing the statistical
independence of secondary structure formation.
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turn (P��P�) obtained with conformations at every 1 ns. One can
clearly see that the relation P�,� � P��P� holds for all time
windows, suggesting independent formations of secondary struc-
ture elements. This mechanism is in agreement with the implicit
solvation results of Snow et al. (6), which found a diffusion–
collision mechanism with similar statistical independence.

To further compare the folding pathways in explicit and implicit
solvation models, additional implicit solvation Pfold simulations
were performed on the aforementioned 25 configurations by using
the Generalized Born�Surface Area continuum solvation model
(24) within the TINKER package (25) modified for Folding@Home.
Other than the solvation model, identical simulation protocols
(including the protein force field) were applied as in the explicit
solvation simulations to prevent any false discrepancy. If the Pfold
values for a given conformation obtained from two different models
agree, then the role of that conformation along the folding pathway
is similar in both models. For example, if Pfold of a conformation is
close to one-half in both cases, then the conformation belongs to the
transition state ensemble in both models (20, 21). Thus, the
comparison of Pfold values can give a quantitative and statistical
comparison between the folding pathways obtained from different
models.

Fig. 4B shows the correlations of Pfold values obtained from the
two models. Even though there are some notable discrepancies, the
two models are in qualitative agreement. This result is in accor-
dance with the findings that the folding rates from both models are
similar (4.5 �s versus 6 �s) and that the folding mechanism is
qualitatively the same (diffusion–collision) within both models.
However, the differences (particularly at low Pfold values for implicit
solvation) suggest that explicit solvation models can lead to poten-
tially important differences when compared with implicit solvation,
especially when characterizing the transition state.

The lack of a perfect correlation in implicit and explicit solvation
models suggests that there are discernable, statistically significant
differences in the trajectories created by these models. In Fig. 4, we
can see that the Pfold values from the implicit solvation are lower
than those from the explicit solvation. After extensive simulations
with all 13 folding trajectories, we find that Pfold from the implicit
model is consistently lower. Accordingly, we can infer that the
transition state (a conformation with Pfold � 0.5) in the implicit
model is closer to the folded state than that found in the explicit
model. Although a direct comparison of the transition state struc-
tures from the two models is rather difficult because of the
heterogeneous nature of the folding pathways of this protein, this
consistency implies a systematic structural difference between the
two models. We speculate that this difference arises from the
central gap between the models: the nonadditive and discrete
nature of water depicted only in the explicit model. In the implicit
model, the system is destabilized by an energy proportional to the
solvent accessible surface area (24). In the explicit model of
solvation, however, the destabilization is not necessarily propor-
tional to this area if the solvent molecules can cooperatively avoid
the vicinity of the hydrophobic groups. This difference leads to an
exaggeration of the destabilization energy from the solvent–solute
contact in the implicit model. Because the solvent density is lower
around�after folding events as shown in Fig. 3, this exaggeration will
be larger for the folded state than for the unfolded state. As a
consequence, the folded state will be relatively less stable in the
implicit model, dragging the transition state toward it by means of
the Hammond effect (22).

Our results also suggest that the Pfold method is sensitive enough
to detect differences in simulation models or force fields. For

example, simulations with electrostatic cutoffs (8) demonstrate
nonnegligible differences in Pfold values when compared with
reaction field (see the supporting information, which is published
on the PNAS web site). We propose that further Pfold analysis can
play an important role in studying folding mechanism because this
method requires a relatively small amount of CPU time, is trivial to
parallelize, and is therefore well suited to grid-based simulation.

Conclusions
We have examined two common, yet radically different models
for solvent in molecular simulation, comparing an explicit versus
an implicit representation of the solvation. Both models agree
well with experimental results on kinetics (rates) as well as in the
rough, overall mechanism [diffusion–collision (23)]. Although
there is a sign that water is trapped in the core of the protein in
the transition state ensemble, it does not play a specific role in
the folding dynamics, and only the protein structure is relevant
in defining the transition state. In addition, despite the agree-
ment in folding rate and general mechanism, we do find differ-
ences in the nature of the transition state ensembles for the two
solvation models when more sensitive probes are used. This
finding indicates that new experiments are needed to arbitrate
between these differences. Indeed, such experiments could open
the door to an even greater predictive power for simulations as
well as a more detailed understanding of the mechanism of
protein folding.

Other simulations have also found discrepancies between
explicit and implicit models. For example, Zhou and Berne (26)
found that the free energy landscape of a �-hairpin was quite
different in the two models. They ascribed this discrepancy to the
erroneous strong salt bridges between charged residues in the
implicit model. Also, Nymeyer and Garcia (27) reported a
profound difference between the models for two �-helical
proteins, with the explicit solvation showing good agreement
with the experiment. Even though such drastic differences are
not observed in our simulations of BBA5, our results are in
qualitative agreement with these findings, given that the ob-
served shift in the transition state location in the implicit model
must be accompanied by a change in the free energy landscape.

Therefore, it will be interesting to see whether an even more
pronounced difference between explicit and implicit solvation
models will be found in the simulated folding of other proteins.
In this respect, we suggest that direct comparisons of folding
simulations from both models will be important both in under-
standing the protein folding and drawing insights into solvation
effects during that process. The ability to conduct such a
comparison on other proteins (5) will likely be of great help in
deriving a more general framework in which we consider the role
of water in the folding mechanism. Through these direct com-
parisons, the elucidation of the behavior and importance of
water near the folding peptide, in terms of both bulk and discrete
aqueous properties, may soon be accomplished.
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