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Recent studies in protein folding suggest that native state topology plays a
dominant role in determining the folding mechanism, yet an analogous
statement has not been made for RNA, most likely due to the strong
coupling between the ionic environment and conformational energetics
that make RNA folding more complex than protein folding. Applying a
distributed computing architecture to sample nearly 5000 complete tRNA
folding events using a minimalist, atomistic model, we have characterized
the role of native topology in tRNA folding dynamics: the simulated bulk
folding behavior predicts well the experimentally observed folding
mechanism. In contrast, single-molecule folding events display multiple
discrete folding transitions and compose a largely diverse, heterogeneous
dynamic ensemble. This both supports an emerging view of hetero-
geneous folding dynamics at the microscopic level and highlights the
need for single-molecule experiments and both single-molecule and bulk
simulations in interpreting bulk experimental measurements.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: RNA folding; bulk kinetics; mechanism; distributed computing;
biasing potential*Corresponding author

Introduction

The study of biological self-assembly is at the
forefront of modern biophysics, with many labora-
tories around the world focused on answering the
question “How do biopolymers adopt biologically
active native folds?” In recent years, protein
folding studies have put forth a new “topology-
driven” view of folding by recognizing correlations
between folding mechanism and topology of the
native state.1 For instance, the laboratories of
Goddard and Plaxco have put forth several reports
connecting the folding rates of small proteins with
the topological character of those proteins,2 – 5 and
comparisons between topology and unfolding

pathways have been made.6,7 Ferrara and Caflisch
studied the folding of peptides forming beta struc-
ture and concluded that the folding free energy
landscape is determined by the topology of the
native state, whereas specific atomic interactions
determine the pathway(s) followed,8 and our
recent comparison between protein and RNA hair-
pin structures supports this line of reasoning.9

This is not surprising when one considers that
the folding transition states for proteins of similar
shape were shown to be insensitive to significant
sequence mutations.10 – 12

Here, we attempt to directly characterize the
contribution of native state topology to the RNA
folding mechanism at both the single-molecule
and bulk levels. Because bulk experiments inher-
ently include ensemble-averaged observables,
with distributions around those averages expected
within a given system, single-molecule studies
complement bulk studies by allowing observation
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of dynamics that are masked by such ensemble-
averaging.13 – 15 Yet differences between single-
molecule and bulk folding behaviors can be
profound, as detailed herein.

In the past, the ability of simulation to predict
bulk system dynamical properties has been hin-
dered by the limited number of events that one
could simulate. Using a distributed computing
architecture16 to overcome this barrier, we have
collected nearly 5000 complete folding events for
the 76 nucleotide tRNA topology, which is signifi-
cantly more complex than the small, fast-folding
systems commonly examined in folding
simulations.9,17,18 This degree of sampling repre-
sents ,500 CPU years of work conducted on
,10,000 CPUs within our global computing
network†.

Interestingly, topological considerations have
only been applied to the smallest of RNAs,9 likely
because the folding of functional RNAs is known
to be more complex than that of small proteins
due to the coupling of RNA conformational ener-
getics with the predominantly ionic environment.19

For instance, it has been demonstrated that the
identity and concentration of ions present can
alter the folding and unfolding dynamics exhibited
by the tRNA topology,20 – 22 further complicating
our understanding of RNA folding.

To directly assess the relationship between
native topology and RNA folding mechanism, we
employ a minimalist model similar to the Gō-like
models previously used to study protein
folding.15,23 – 28 We improve upon these models by
developing a folding potential that: (i) treats the
polymer in atomic detail; (ii) introduces attractive
non-native interaction energies; and (iii) includes
ion-dependent effects on the folding dynamics.
These features allow for a much more accurate
approximation of the true energetics than the
coarse-grained models commonly used to study
the dynamics of large biomolecules,28 while inher-
ently maintaining the polymeric entropy expected
from atomistic models, thereby allowing a causal
relationship to be inferred between changes in
the energetics of the model and changes in the
resulting dynamics.

Striving for simplicity, we consider the most
elementary model of the ionic effect in RNA fold-
ing, which assumes that monovalent and divalent
cations stabilize secondary and tertiary structure,
respectively. We propose that such a simple model
is adequate to capture the essential folding
dynamics observed in experiments under varying
ionic conditions: our model employs two para-
meters, 12 and 13, which specify the energetic bene-
fit of native secondary and tertiary interactions,
respectively, coupled only in their simultaneous
use in thermal calibrations of the model.

We note that while the use of Gō-like potentials
to extract precise folding dynamics is questionable

at best, the simplified biasing potential used here
presents an ideal methodology to probe the
relationship between topology and folding mecha-
nism: the folding potential is built on information
from the native tRNA fold. If the relationship
between topology and folding mechanism is negli-
gible, our results should show significant disagree-
ment with experimental observations. If, on the
other hand, this relationship is significant, the
agreement with experiment should also be
significant.

Indeed, we show below that the bulk folding
behavior predicted by this simple, atomistic,
minimalist model predicts well the experimentally
observed bulk folding mechanism, suggesting that
topology does in fact contribute to the bulk folding
mechanism. Furthermore, massive sampling has,
for the first time, allowed direct comparison of
simulated ensemble kinetics to single-molecule
folding simulations, illustrating a tremendous
heterogeneity inherent to individual folding events
that collectively contribute to a topologically dri-
ven bulk folding mechanism. We discuss below
the general results seen in single-molecule folding
trajectories, followed by analysis of kinetic and
mechanistic observations from an ensemble-
averaged perspective, as well as the role of poly-
meric entropy in folding. Caveats of the model are
then discussed in Methods.

Results

Diverse pathways in tRNA folding

The native fold of tRNA can be described in
terms of nine “substructures” (Figure 1(a)). The
well-defined secondary structure is composed of
four helix-stem regions (S1, S2, S3, S4), while the
tertiary structure consists of a set of five regions of
long-range contact (T12, T13, T14, T23, T24), where
the dual subscripts denote the two helix-stems in
contact for a given tertiary region. Formation of
these substructures in simulated single-molecule
folding events occur as a series of numerous, dis-
crete transitions in the fraction of native contacts,
Q. To quantitatively characterize the observed
pathways, the relative folding times for these
nine substructures were calculated. In many cases,
multiple substructures folded in the same time
range. To unambiguously determine the sub-
structural folding order in a given trajectory, the
variance in the fraction of native contacts within
each substructure throughout that trajectory,
VarðQÞ; was calculated, and the relative folding
time of each substructure was defined as the tem-
poral point at which VarðQÞ was a maximum (i.e.
the point at which Q was increasing most rapidly).

Pearson correlations (defined as the covariance
of two sets divided by the product of their stan-
dard deviations) between folding times for each
pair of substructures within the ensemble of fold-
ing events were then evaluated, and the resulting† Folding@Home, http://folding.stanford.edu
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matrix (Figure 1(b)) shows a distinct separation
between two phases during folding. These
uncorrelated groups are referred to below as
phase 1 ¼ {S2; S3; S4;T12} and phase 2 ¼ {T13;T14;
T23;T24; S1}: Each folding trajectory was then
assigned to a specific folding pathway, denoted by
the sequence of substructural folding events that
occurred in that specific simulation.

In an effort to simplify the representation of the
many pathways observed, folding simulations
were grouped into three classes. While the initial
events in the folding process were similar for all
folders (predominantly stem formation), the final

stages of folding exhibited a much larger variation.
For this reason, the ordering of the substructural
folding events within phase 2 was used to classify
folding trajectories. The observed statistical
weighting of folding pathways is detailed for each
folding class in Table 1. For brevity, pathways that
contributed less than 1% of the folding ensemble
have been removed, and the tabulated pathways
account for approximately 90% of observed
folders.

Although this sampling of pathways cannot
quantitatively capture equilibrium thermodynamic
behavior, insight into the qualitative nature of the
folding landscape (e.g. locations of intermediates
and free energy barriers) can be gained by consid-
ering the relative probabilities of each microstate
present in the simulated ensemble along a minimal
number of folding parameters (the fraction of
native secondary and tertiary contacts, Q2 and Q3,
respectively). The log of the conformational proba-
bilities on this simplified, two-dimensional surface
is plotted in Figure 2(a). It is evident that each
class of folding pathways predicts multiple inter-
mediates in the folding process, observed as the
previously mentioned numerous, discrete steps in
single-molecule folding trajectories. A graphical
representation of the most statistically predomi-
nant pathway observed is shown in Figure 2(b),
and an animation of this simulation is available
for viewing online†.

Ensemble-averaged kinetics

We find significant differences in comparing
ensemble averaged dynamic properties to single-
molecule trajectories. As shown in Figure 3(a),
again using the fraction of native contacts as the
primary folding parameter, several distinct popu-
lations are present throughout the ensemble of
folding events. With the exception of the fully
extended chain (E, a physically irrelevant state
used to start simulations without biasing the resul-
ting folding pathways), these states qualitatively

Figure 1. tRNA substructure depiction and folding
time correlations. (a) tRNA substructures: red, S1 accep-
tor stem; orange, S2 D-stem; green, S3 anti-codon stem;
blue, S4 T-stem; regions of tertiary contact are noted
with arrows, where Tij indicates tertiary interactions
between the Si and Sj stems. (b) Relative folding time
(Pearson) correlations between each substructural pair
within the ensemble of 2592 folding trajectories.

Table 1. Weighting of tRNA folding pathways

Class Weight (%) Pathway

I 36.3 S4 [S2,T12] S3 [T13,T23] [T14,T24] S1

10.6 S4 S3 [S2,T12] [T13,T23] [T14,T24] S1

4.5 [S2, T12] S4 S3 [T13,T23] [T14,T24] S1

1.7 S4 [S2,T12] S3 T24 [T13,T23] T14 S1

II 13.0 S4 [S2,T12] S3 S1 [T13,T23] [T14,T24]
3.4 S4 S3 [S2,T12] S1 [T13,T23] [T14,T24]
2.2 S4 [S2,T12] S3 S1 T14 [T13,T23] T24

1.5 S4 [S2,T12] S1 S3 [T13, T23] [T14,T24]
1.4 [S2,T12] S4 S3 S1 [T13,T23] [T14,T24]

III 8.1 S4 [S2,T12] S3 [T13,T23] S1 [T14,T24]
2.4 S4 S3 [S2,T12] [T13,T23] S1 [T14,T24]
2.4 S4 S3 [S2,T12] [T13,T23] S1 [T14,T24]
1.6 S4 [S2,T12] S3 [T13,T23] T14 S1 T24

† http://folding.stanford.edu/tRNA/
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agree with experimentally observed populations
described by Sosnick and co-workers,20,29 who
differentiate between multiple unfolded states (U0

and U in the presence and absence of 4 M urea,
respectively) and intermediates (INa denotes the
bulk intermediate observed in high sodium con-
centrations and IMg is the bulk intermediate
observed in the presence of magnesium).

The distributions of native contact formation
PfoldðQÞ versus the number of native contacts ðQÞ
for each substructure are plotted in Figure 3(b),
with secondary substructures (upper panel) color-
coded as in Figure 1(a), and tertiary substructures
(lower panel) scaled from white (T12) to black
(T24). Early events in the folding process (when Q
is small) include formation of the three non-
terminal helices, alongside the T12 tertiary contact
(phase 1). Long-range tertiary contacts
{T13;T14;T23;T24} then form in any variety of tem-
poral sequences after phase 1 has completed, with
the formation of the terminal helix-stem ðS1; redÞ
either preceding or succeeding collapse and
formation of tertiary structure, as described
experimentally.20

The distribution of the radius of gyration Rg is
shown in Figure 3(c), and shows quantitative
agreement with experimentally measured molecu-
lar sizes attained for collapsed states:29 the IMg

and N ensembles have kRgl ¼ 31:8ð^3:4Þ Å and
kRgl ¼ 26:2ð^1:3Þ Å, respectively. These values are
only slightly larger than those reported by Fang
et al. due to the added polymeric flexibility of our
model (see Methods). While the quantitative agree-
ment for the native state Rg is fortuitous (based on
the construction of the model), the quantitative

agreement observed for IMg is a striking prediction
of the character of the intermediate from a model
based solely on native topology information. The
distribution of all-atom root-mean-squared devia-
tions (RMSD) from the native structure is also
shown (inset).

The folding mechanism predicted from a bulk
perspective (which is dependent on ion identity
and concentration) is shown in Figure 3(d). From
the unfolded state, the IMg (full formation of
secondary structure) and INa (formation of the
three non-terminal helix-stems) intermediates are
both possible. From IMg, the INa intermediate can
be formed, with phase 2 tertiary contacts forming
last. Alternatively, folding may include formation
of tertiary contacts followed by zipping of the
terminal S1 helix-stem.

To illustrate how a three-state (U ! I ! N)
observation could come from a large ensemble of
individual folding events, each exhibiting numer-
ous discrete transitions, Figure 4 depicts the
ensemble-averaged fraction of native contacts
kQðtÞl alongside a single, randomly chosen trajec-
tory (Figure 4(a)). Figure 4(b) demonstrates how
the discrete nature of folding is lost when consider-
ing only ten randomly chosen individual folding
events in the averaging. With more than 2500
trajectories (Figure 4(c)), all sense of discrete, step-
wise folding is lost, and the kQðtÞl curve becomes
a smooth function of time. Still, the averaging of
only ten independent folding trajectories is more
representative of a single trajectory than of the
ensemble as a whole, and only after including ,500
or more events (data not shown) does the kQðtÞl
curve approximate that of the entire ensemble.

Figure 2. Statistical energy pro-
files and the predominant folding
pathway. (a) Locations of free
energy barriers and minima on the
simplified two-dimensional folding
surface, where folding classes were
defined by the order of substruc-
tural formation in the second phase
of folding. (b) Graphical represen-
tation of the most predominant
folding pathway in our simulations
with substructures color-coded as
in Figure 1(a). Labels indicate
which substructures have folded
or are folding in each frame. The
relevant statistical energy landscape
is shown in grayscale with the
trajectory overlaid in red.
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It is convenient to consider the formation of each
of the nine independent substructures within the
ensemble, starting from the extended polymer, as
a stochastic (Poisson) process with a given folding
rate ln. This is particularly the case for simple
helix formation (with no bulges or other internal
structure), which has been shown to be a two-
state process.9,30,31 Such processes are additive
such that the sum of n independent Poisson
processes is itself a Poisson process with a total
rate equal to the sum of the n individual rates.
Thus, if folding occurred simply as simultaneous
formation of all nine substructures, one would
expect the total number of native contacts Q to
increase exponentially in time, with a total rate
equal to the sum of the rates for each substructure.

In contrast to the simple, exponentially increas-
ing kQðtÞl described above, two such phases are
apparent in Figure 4(c). Because phase 2 begins
only after a portion of individual trajectories have
completed phase 1, the two transitions in the
kQðtÞl curve were fit individually to single-expo-
nential processes (dotted curves in Figure 4(c)),
resulting in R2 values of 0.999 and 0.998, respect-
ively. Were there not a significant overlap between
the two phases (i.e. if all trajectories completed
phase 1 prior to any of them starting phase 2),
these fits would be expected to fully predict kQðtÞl;
which would then exhibit a cusp at the crossover
point between the two fits. As the resulting rate of
phase 1 is greater than that for phase 2, the buildup
of a single observable intermediate between the
phases is predicted.

To consider the dynamic populations present
from a chemical kinetics perspective, Figure 4(d)
shows the evolution of ensemble mole fractions of

Figure 4. Ensemble-averaged kinetics. The fraction of
native contacts for a single folding trajectory (a) shown
next to the ensemble-averaged fraction of native contacts
for ten randomly chosen folding simulations (b) and all
2592 folding events (c). kQðtÞl approaches a smooth func-
tion of time with two distinct, sequential exponential
phases (fitted as dotted curves) in (c). In (b) and (c),
Var½QðtÞ� is shown as a thick gray line. (d) The time-
dependent mole fractions for the U, I, and N states.

Figure 3. Ensemble-averaged properties during tRNA
folding. (a) Detected states in the bulk folding process.
(b) Distributions of relative folding times for each sub-
structure, with secondary structures color-coded as in
Figure 1(a) (upper panel) and tertiary structures scaled
from white to black (lower panel). (c) Rg and RMSD
(inset) distributions for the observed states. (d) Predicted
ion-dependent bulk folding mechanism.
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unfolded U, intermediate I, and native state N con-
formations. The I state was defined (from statistical
populations in Figure 2(a)) as having formed
,60% and ,10% of native secondary and tertiary
contacts, respectively, and exhibits a concentration
maximum that coincides with the crossover point
of the individual fits in (c). The native state curve
is well fit by the proper biexponential relationship
for the sequential, irreversible reaction U ! I ! N
with an R2 value of 0.999.

Pathways for overcoming entropy

A strength of atomistic, minimalist models is
their utility in elucidating the role of polymeric
entropy in the folding dynamics.27 It is thus inter-
esting to consider the balance of interaction energy
and polymeric entropy in tRNA folding. We stress
that in this minimalist model the energetics are
defined by the native tRNA topology or, more
specifically, by the “stability ratio,” 12/13. The fold-
ing mechanisms for extreme values of the stability
ratio are obvious: for 12=13 q 1 secondary structure
will form preferentially, and for 12=13 p 1; tertiary
structure would be preferred. Simulation can play
an important role in characterizing the experi-
mentally relevant intermediate regime, where one
must consider the delicate balance between the
energetic benefits and entropic penalties of form-
ing native structure.

The variation of 12/13 implies the variation of
ionic conditions: calibration of our model to
experiment suggests that for 12=13 ¼ 1 (Figure 5,
top panels) we are in a regime analogous to
magnesium-mediated folding, whereby three of
the four helix-stem elements are structured in the
early stages of folding (observed experimentally

as a preference for IMg), with S1 forming late in the
folding process. In contrast, when secondary struc-
ture is significantly more favorable than tertiary
structure, 12=13 ¼ 3; our model simulates a regime
analogous to higher sodium concentrations in the
absence of magnesium, as shown in Figure 5
(lower panels). In this case, the formation of the
terminal stem-helix precedes the formation of
phase 2 tertiary contacts (INa). We stress that this
finding is in good agreement with the rather non-
canonical experimental results reported by Shelton
et al.,20 in which the simple cloverleaf secondary
structure is not a necessary intermediate on the
tRNA folding pathway.

Like the formation of nucleic acid hairpins, the
folding of the terminal RNA helix-stem appears
to be cooperative due to a balance between the
energetics of interaction and the polymeric entropy
loss of structure formation. Indeed, it has been
previously suggested that the polymeric entropy
of biomolecules can be sufficient to lead to
cooperative folding.32 However, one would expect
a significant entropic penalty for bringing together
the two ends of the 76 nucleotide tRNA, and sur-
mounting this barrier is apparently accomplished
in one of the two experimentally observed ways.

Increasing the stability ratio results in greater
secondary structure stability, and the enthalpy of
base-pairing dominates the conformational free
energy, thus favoring early zipping of the terminal
stem (INa). On the other hand, decreasing the
stability ratio implies a more stable tertiary struc-
ture, and the entropic barrier to terminal zipping
dominates, resulting in unpaired S1 strands (IMg)
until late in the folding process (after long-range
collapse has occurred). We thus hypothesize that
this entropic barrier is responsible for the distinct
ion-dependent dynamics observed in tRNA fold-
ing, with counterions tuning the relative stability
of the intermediates and, in effect, “tipping the
scale” in favor of one mechanism over another. To
be sure, our simulations show that even a some-
what subtle change in the stability ratio can lead
to a qualitative change in the folding behavior.

Discussion and Implications

Using massively distributed computational
sampling and a minimalist, atomistic model with
implicit solvation and counterion effects, we
have shown that bulk non-equilibrium reaction
dynamics can be extracted from many single-mol-
ecule events without the need for extrapolating
bulk behavior from a small number of simulations.
While our ensemble-averaging includes far fewer
events than the number studied in standard bulk
experiments, we have observed convergence to an
ensemble signal from ,2500 individual folding
events, and have identified the lower bound for
attaining the ensemble signal to be ,500 indi-
vidual trajectories for a molecule of this size and
complexity.

Figure 5. Ion-dependent dynamics. As in Figure 3(b),
the distributions of relative substructural folding times
are shown for both perturbed values of the stability
ratio 12=13:
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Our results indicate that native tRNA topology
serves as a dominant predictor of the bulk folding
mechanism. To be sure, a biasing potential built
from native state information that includes non-
native interaction energetics recovers the known
three-state behavior reported previously and well
predicts the character of known environmentally
dependent intermediates, as specified by both
molecular size and substructure formation.20 In
contrast to the ensemble-averaged behavior, great
diversity in single-molecule folding pathways has
been observed. This is not surprising when con-
sidered in the context of contemporary folding
theories, which identify native folds as energetic
“traps” and portray the polymeric motion that
leads to trapping in low-energy states as predomi-
nantly stochastic in nature.

Still, it remains a common practice to interpret
bulk signals from various experimental sources as
representing the “true” dynamics on a microscopic
level, and it has only recently been put forth that
(unobservable) intermediates are likely present
even in the most simple two-state folders.33 The
sampling reported herein thus serves as an
example of the distinction that should be drawn
between single-molecule (microscopic) and bulk
(macroscopic) probes, and highlights the need for
both single-molecule experiments and simulation,
both single-molecule and bulk, in the interpre-
tation of bulk measurements. Indeed, it will be
intriguing to see this complexity revealed by
single-molecule experiments of tRNA folding.

Methods

Construction of the minimalist model

To construct a minimalist model for RNA folding, we
have expanded upon previous minimalist models of pro-
tein folding15,25,28,34,35 by including non-native long-range
interaction energy terms (adding energetic frustration
to the folding landscape) and by considering the role of
solvated counterions in the folding process. We define
native contacts as atomic pairs separated by three or
more residues and within 6.0 Å of one another in the
native structure (based on tRNAphe, PDB ID 6tna). These
interatomic interactions are modeled using different
classes of long-range Lennard–Jones (LJ) interactions:
native contact pairs within the same helix-stem region
(secondary contacts) are assigned energy 12 (initially
,ten times greater than non-native interaction energies),
while all other native pairs (tertiary contacts) are
assigned LJ energy 13.

An initial stability ratio of 12=13 ¼ 2 was used, thereby
assigning twice the energetic benefit to native secondary
contacts as that assigned to native tertiary contacts, and
a total of 2592 complete folding events were simulated.
To gain insight into the distinct kinetics reported for
differing ionic conditions,20 over 1000 complete folding
events were also collected using stability ratios of 1 and
3, respectively. Each parameterization was calibrated to
a melting temperature of ,343 K such that an effective
temperature of 280(^10) K was employed for all folding
simulations.

A unified-atom variant of the AMBER94 force field36

was used to define bonded interactions (bond, angle,
and torsion terms), with optimal geometries taken from
the native state. To speed the dynamics of interest, low
viscosity (tT ¼ 0.5 ps, ,2% that of water) was employed
and dihedral energy terms were increased by a factor of
5 relative to the effective temperature. The polymer was
made less rigid by also decreasing bonded interaction
energies by a factor of 10 relative to the effective
temperature. A complete set of simulation input files is
available†.

All simulations were conducted using the stochastic
dynamics integrator within the Gromacs molecular
dynamics suite37 with 15 Å cutoffs on all non-bonded
interactions. As the mean fraction of native contacts
present in simulations of the native state was 0.87, all
folding simulations (started from a fully extended con-
formation) were considered fully folded when 87% of
all possible secondary contacts and 87% of all possible
tertiary contacts were formed.

Caveats of the biasing potential

While minimalist models allow the study of events not
observable via fully atomistic molecular dynamics,15,25,27

the limitations of the minimalist model approach should
be considered. First of all, a quantitative prediction of
absolute transition rates is not possible, and temporal
analyses have therefore been conducted in units of
iterations, yielding qualitative information on the nature
of relative rates.15 Moreover, since non-native inter-
actions are less energetically favorable than native ones,
this model is not expected to accurately characterize
off-pathway folding intermediates (kinetic traps), other
than those resulting from topological frustration.15,26

However, we note that the inclusion of weak non-native
attractions not present in previous biasing models
greatly enhances the stochastic nature of folding trajec-
tories, allowing a more plausible description of the
underlying energetic landscape.

Furthermore, as 12 and 13 were chosen to be constant
over the whole molecule, the simulated tRNA sequence
may not have specific energetic biases to particular sub-
structures. While some tRNA sequences may break this
approximation, the goal of this work is to study the
biasing role of polymeric entropy and we are thus inves-
tigating a general property of RNA folding, i.e. the effect
of the tRNA topology on folding. While one could
include substructure-dependent energetic biases to
model differences between specific tRNA sequences,
this would obscure the roles of polymeric entropy and
topology in folding.

Finally, a prime consideration in employing a biasing
potential of any sort, is the possibility of artifacts within
the potential distorting the observed dynamics far from
that of the true biomolecular system, and the true test of
such a potential is the ability to show agreement with
current knowledge prior to making predictions. Within
the results reported above, we propose that such “arti-
factual folding” is seen as the early formation of the T12

tertiary contact (Figure 3(b)), which has not been shown
to occur in the early stages of folding. Such potential arti-
facts may also affect the relative rates of individual helix-
stem formation. We believe such artifactual folding to be
minimal within the model, and stress that the ordering of

† http://folding.stanford.edu/tRNA
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phase 1 secondary structure formation does not change
the overall character of the analyses presented above.
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